Versatile strain relief pathways in epitaxial films of (001)-oriented PbSe on III-V substrates

被引:1
|
作者
Haidet, Brian B. [1 ]
Meyer, Jarod [2 ]
Reddy, Pooja [2 ]
Hughes, Eamonn T. [1 ]
Mukherjee, Kunal [2 ]
机构
[1] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93106 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
TOPOLOGICAL CRYSTALLINE INSULATOR; X-RAY-SCATTERING; MISFIT DISLOCATIONS; THIN-FILMS; LAYERS; RELAXATION; INTERFACES; SAPPHIRE; COHERENT; SI(100);
D O I
10.1103/PhysRevMaterials.7.024602
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
PbSe and related IV-VI rocksalt-structure semiconductors have important electronic properties that are controlled by epitaxial strain and interfaces and can be harnessed in the emerging class of IV-VI/III-V hybrid heterostructures. The synthesis of such heterostructures and understanding mechanisms for strain relief in these materials is central to achieving this goal. We show that a range of interfacial defects mediate lattice mismatch in (001)-oriented epitaxial thin films of PbSe and III-V templates of GaAs, InAs, and GaSb. While the primary slip system {100} < 110 > in PbSe is well studied for its facile dislocation glide even at low temperatures, it is inactive in (001)-oriented films in our work. Yet, we obtain nearly relaxed PbSe films in the three heteroepitaxial systems studied with interfaces ranging from incoherent without localized misfit dislocations on 8.3% mismatched GaAs, a mixture of semicoherent and incoherent patches on 1.5% mismatched InAs, to nearly coherent on 0.8% mismatched GaSb. The semicoherent portions of the interfaces to InAs form by 60 degrees misfit dislocations gliding on higher-order {111} < 110 > slip systems. On the more closely lattice-matched GaSb, arrays of 90 degrees (edge) misfit dislocations form via a climb process. This diversity of strain-relaxation mechanisms accessible to PbSe makes it a convenient material for epitaxial integration in hybrid heterostructures.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Epitaxial Integration and Defect Structure of Layered SnSe Films on PbSe/III-V Substrates
    Haidet, Brian B.
    Hughes, Eamonn
    Mukherjee, Kunal
    CRYSTAL GROWTH & DESIGN, 2022, 22 (06) : 3824 - 3833
  • [2] Epitaxial III-V Films and Surfaces for Photoelectrocatalysis
    Doescher, Henning
    Supplie, Oliver
    May, Matthias M.
    Sippel, Philipp
    Heine, Christian
    Munoz, Andres G.
    Eichberger, Rainer
    Lewerenz, Hans-Joachim
    Hannappel, Thomas
    CHEMPHYSCHEM, 2012, 13 (12) : 2899 - 2909
  • [3] Epitaxial ternary and quaternary III-V antimonide substrates
    Mauk, MG
    Cox, JA
    Sulima, OV
    Datta, S
    Tata, AN
    IEEE LESTER EASTMAN CONFERENCE ON HIGH PERFORMANCE DEVICES, PROCEEDINGS, 2002, : 213 - 222
  • [4] ON PREPARATION OF EPITAXIAL FILMS OF III-V COMPOUNDS
    JAIN, VK
    SHARMA, SK
    SOLID-STATE ELECTRONICS, 1970, 13 (08) : 1145 - &
  • [5] STRAIN EVALUATION IN III-V COMPOUND EPITAXIAL LAYERS
    BANGERT, U
    CHARSLEY, P
    FAUX, DA
    HARVEY, JA
    SUPERLATTICES AND MICROSTRUCTURES, 1991, 9 (01) : 91 - 94
  • [6] Crack formation in III-V epilayers grown under tensile strain on InP(001) substrates
    Murray, RT
    Kiely, CJ
    Hopkinson, M
    PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1996, 74 (02): : 383 - 393
  • [7] Epitaxial Growth of III-V Nanowires on Group IV Substrates
    Bakkers, Erik
    Borgstrom, Magnus
    Verheijen, Marcel
    ADVANCES IN GAN, GAAS, SIC AND RELATED ALLOYS ON SILICON SUBSTRATES, 2008, 1068 : 223 - 234
  • [8] Epitaxial Growth of III-V Nanowires on Group IV Substrates
    Erik P. A. M. Bakkers
    Magnus T. Borgström
    Marcel A. Verheijen
    MRS Bulletin, 2007, 32 : 117 - 122
  • [9] Epitaxial growth of III-V nanowires on group IV substrates
    Bakkers, Erik P. A. M.
    Borgstrom, Magnus T.
    Verheijen, Marcel A.
    MRS BULLETIN, 2007, 32 (02) : 117 - 122
  • [10] The Interaction of Extended Defects as the Origin of Step Bunching in Epitaxial III-V Layers on Vicinal Si(001) Substrates
    Niehle, Michael
    Rodriguez, Jean-Baptiste
    Cerutti, Laurent
    Tournie, Eric
    Trampert, Achim
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2019, 13 (10):