Low-coordination Nanocrystalline Copper-based Catalysts through Theory-guided Electrochemical Restructuring for Selective CO2 Reduction to Ethylene

被引:30
|
作者
Fang, Wensheng [1 ]
Lu, Ruihu [2 ]
Li, Fu-Min [1 ]
He, Chaohui [1 ]
Wu, Dan [3 ]
Yue, Kaihang [4 ]
Mao, Yu [2 ]
Guo, Wei [1 ]
You, Bo [1 ]
Song, Fei [5 ]
Yao, Tao [3 ]
Wang, Ziyun [2 ]
Xia, Bao Yu [1 ]
机构
[1] Huazhong Univ Sci & Technol HUST, Sch Chem & Chem Engn, State Key Lab Mat Proc & Die & Mould Technol, Hubei Key Lab Mat Chem & Serv Failure,Minist Educ,, 1037 Luoyu Rd, Wuhan 430074, Peoples R China
[2] Univ Auckland, Sch Chem Sci, Auckland 1010, New Zealand
[3] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China
[4] Chinese Acad Sci SICCAS, Shanghai Inst Ceram, CAS Key Lab Mat Energy Convers, Shanghai 200050, Peoples R China
[5] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai Synchrotron Radiat Facil, Shanghai 201800, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon dioxide reduction; Restructuring behavior; Cu catalyst; Ethylene; Low coordination number; CARBON-DIOXIDE; OXIDATION-STATE; ELECTROREDUCTION; CU; CONVERSION; MONOXIDE;
D O I
10.1002/anie.202319936
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into ethylene (C2H4), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed density functional theory (DFT) and molecular dynamics (MD) simulations to elucidate the restructuring behavior of a catalyst under electrochemical conditions and delineated its restructuring patterns. Leveraging insights into this restructuring behavior, we devised an efficient, low-coordination copper-based catalyst. The resulting synthesized catalyst demonstrated an impressive Faradaic efficiency (FE) exceeding 70 % for ethylene generation at a current density of 800 mA cm(-2). Furthermore, it showed robust stability, maintaining consistent performance for 230 hours at a cell voltage of 3.5 V in a full-cell system. Our research not only deepens the understanding of the active sites involved in designing efficient carbon dioxide reduction reaction (CO2RR) catalysts but also advances CO2 electrolysis technologies for industrial application.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Electrochemical CO2 Reduction to Ethanol with Copper-Based Catalysts
    Karapinar, Dilan
    Creissen, Charles E.
    de la Cruz, Jose Guillermo Rivera
    Schreiber, Moritz W.
    Fontecave, Marc
    ACS ENERGY LETTERS, 2021, 6 (02) : 694 - 706
  • [2] Research progress of copper-based catalysts for CO2 electrochemical reduction
    Yan, Jia
    Song, Weixiu
    Zhao, Zhenli
    Zhang, Manyu
    Wu, Yanjing
    Zhang, Lianhong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 89 : 664 - 685
  • [3] Tailoring the Surface and Interface Structures of Copper-Based Catalysts for Electrochemical Reduction of CO2 to Ethylene and Ethanol
    Zhang, Ziyang
    Bian, Lei
    Tian, Hao
    Liu, Yuan
    Bando, Yoshio
    Yamauchi, Yusuke
    Wang, Zhong-Li
    SMALL, 2022, 18 (18)
  • [4] Selectivity roadmap for electrochemical CO2 reduction on copper-based alloy catalysts
    Zhi, Xing
    Jiao, Yan
    Zheng, Yao
    Vasileff, Anthony
    Qiao, Shi-Zhang
    NANO ENERGY, 2020, 71
  • [5] Recent Advances in Electrochemical CO2 Reduction Using Copper-Based Catalysts
    Meng, Yichen
    Kuang, Siyu
    Liu, Hai
    Fan, Qun
    Ma, Xinbin
    Zhang, Sheng
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (05)
  • [6] Stability and Degradation Mechanisms of Copper-Based Catalysts for Electrochemical CO2 Reduction
    Popovic, Stefan
    Smiljanic, Milutin
    Jovanovic, Primoz
    Vavra, Jan
    Buonsanti, Raffaella
    Hodnik, Nejc
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (35) : 14736 - 14746
  • [7] Recent Developments in Copper-Based Catalysts for Enhanced Electrochemical CO2 Reduction
    Yesupatham, Manova Santhosh
    Honnappa, Brahmari
    Agamendran, Nithish
    Kumar, Sai Yeswanth
    Chellasamy, Gayathri
    Govindaraju, Saravanan
    Yun, Kyusik
    Selvam, N. Clament Sagaya
    Maruthapillai, Arthanareeswari
    Li, Wei
    Sekar, Karthikeyan
    ADVANCED SUSTAINABLE SYSTEMS, 2024, 8 (06)
  • [8] Stability and Degradation Mechanisms of Copper-Based Catalysts for Electrochemical CO2 Reduction
    Popović, Stefan
    Smiljanić, Milutin
    Jovanovič, Primož
    Vavra, Jan
    Buonsanti, Raffaella
    Hodnik, Nejc
    Angewandte Chemie - International Edition, 2020, 59 (35): : 14736 - 14746
  • [9] Electrocatalytic Reduction of CO2 on Copper-Based Catalysts
    Liu, Mengyan
    Wang, Yuanshuang
    Deng, Wen
    Wen, Zhenhai
    PROGRESS IN CHEMISTRY, 2018, 30 (04) : 398 - 409
  • [10] Research progress of electrochemical CO2 reduction for copper-based catalysts to multicarbon products
    Ni, Zhiyuan
    Liang, Haiming
    Yi, Ziyu
    Guo, Rui
    Liu, Chunming
    Liu, Yanguo
    Sun, Hongyu
    Liu, Xuanwen
    COORDINATION CHEMISTRY REVIEWS, 2021, 441