Label-set impact on deep learning-based prostate segmentation on MRI

被引:4
|
作者
Meglic, Jakob [1 ,2 ]
Sunoqrot, Mohammed R. S. [1 ,3 ]
Bathen, Tone Frost [1 ,3 ]
Elschot, Mattijs [1 ,3 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Circulat & Med Imaging, N-7030 Trondheim, Norway
[2] Univ Ljubljana, Fac Med, Ljubljana 1000, Slovenia
[3] Trondheim Reg & Univ Hosp, St Olavs Hosp, Dept Radiol & Nucl Med, N-7030 Trondheim, Norway
关键词
Label; Deep learning; Segmentation; Prostate; MRI; VARIABILITY; CHALLENGE; IMAGES; GLAND;
D O I
10.1186/s13244-023-01502-w
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background Prostate segmentation is an essential step in computer-aided detection and diagnosis systems for prostate cancer. Deep learning (DL)-based methods provide good performance for prostate gland and zones segmentation, but little is known about the impact of manual segmentation (that is, label) selection on their performance. In this work, we investigated these effects by obtaining two different expert label-sets for the PROSTATEx I challenge training dataset (n = 198) and using them, in addition to an in-house dataset (n = 233), to assess the effect on segmentation performance. The automatic segmentation method we used was nnU-Net. Results The selection of training/testing label-set had a significant (p < 0.001) impact on model performance. Furthermore, it was found that model performance was significantly (p < 0.001) higher when the model was trained and tested with the same label-set. Moreover, the results showed that agreement between automatic segmentations was significantly (p < 0.0001) higher than agreement between manual segmentations and that the models were able to outperform the human label-sets used to train them. Conclusions We investigated the impact of label-set selection on the performance of a DL-based prostate segmentation model. We found that the use of different sets of manual prostate gland and zone segmentations has a measurable impact on model performance. Nevertheless, DL-based segmentation appeared to have a greater inter-reader agreement than manual segmentation. More thought should be given to the label-set, with a focus on multicenter manual segmentation and agreement on common procedures. Critical relevance statement Label-set selection significantly impacts the performance of a deep learningbased prostate segmentation model. Models using different label-set showed higher agreement than manual segmentations.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Label-set impact on deep learning-based prostate segmentation on MRI
    Jakob Meglič
    Mohammed R. S. Sunoqrot
    Tone Frost Bathen
    Mattijs Elschot
    Insights into Imaging, 14
  • [2] Deep learning-based segmentation considering observer variation - evaluation in prostate MRI for BT
    Dushatskiy, A.
    Bosman, P. A. N.
    Hinnen, K. A.
    Wiersma, J.
    Westerveld, H.
    Pieters, B.
    Alderliesten, T.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S406 - S407
  • [3] Impact of uncertainty quantification through conformal prediction on volume assessment from deep learning-based MRI prostate segmentation
    Gade, Marius
    Nguyen, Kevin Mekhaphan
    Gedde, Sol
    Fernandez-Quilez, Alvaro
    INSIGHTS INTO IMAGING, 2024, 15 (01):
  • [4] Deep learning-based automatic segmentation of cerebral infarcts on diffusion MRI
    Wi-Sun Ryu
    Dawid Schellingerhout
    Jonghyeok Park
    Jinyong Chung
    Sang-Wuk Jeong
    Dong-Seok Gwak
    Beom Joon Kim
    Joon-Tae Kim
    Keun-Sik Hong
    Kyung Bok Lee
    Tai Hwan Park
    Sang-Soon Park
    Jong-Moo Park
    Kyusik Kang
    Yong-Jin Cho
    Hong-Kyun Park
    Byung-Chul Lee
    Kyung-Ho Yu
    Mi Sun Oh
    Soo Joo Lee
    Jae Guk Kim
    Jae-Kwan Cha
    Dae-Hyun Kim
    Jun Lee
    Man Seok Park
    Dongmin Kim
    Oh Young Bang
    Eung Yeop Kim
    Chul-Ho Sohn
    Hosung Kim
    Hee-Joon Bae
    Dong-Eog Kim
    Scientific Reports, 15 (1)
  • [5] Deep Learning-Based Methods for Prostate Segmentation in Magnetic Resonance Imaging
    Comelli, Albert
    Dahiya, Navdeep
    Stefano, Alessandro
    Vernuccio, Federica
    Portoghese, Marzia
    Cutaia, Giuseppe
    Bruno, Alberto
    Salvaggio, Giuseppe
    Yezzi, Anthony
    APPLIED SCIENCES-BASEL, 2021, 11 (02): : 1 - 13
  • [6] A Deep Learning-Based Approach with Semi-supervised Level Set Loss for Infant Brain MRI Segmentation
    Trinh, Minh-Nhat
    Pham, Van-Truong
    Tran, Thi-Thao
    PERVASIVE COMPUTING AND SOCIAL NETWORKING, ICPCSN 2022, 2023, 475 : 533 - 545
  • [7] Deep Learning-Based Intraprostatic Lesion Segmentation Using Multi-Parametric MRI For Prostate Radiation Therapy
    Chen, Y.
    Xing, L.
    Bagshaw, H. P.
    Buyyounouski, M. K.
    Han, B.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : S100 - S100
  • [8] Comparison of skeletal segmentation by deep learning-based and atlas-based segmentation in prostate cancer patients
    Kazuki Motegi
    Noriaki Miyaji
    Kosuke Yamashita
    Mitsuru Koizumi
    Takashi Terauchi
    Annals of Nuclear Medicine, 2022, 36 : 834 - 841
  • [9] Deep Learning-Based Boundary Detection for Model-Based Segmentation with Application to MR Prostate Segmentation
    Brosch, Tom
    Peters, Jochen
    Groth, Alexandra
    Stehle, Thomas
    Weese, Juergen
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT IV, 2018, 11073 : 515 - 522
  • [10] Comparison of skeletal segmentation by deep learning-based and atlas-based segmentation in prostate cancer patients
    Motegi, Kazuki
    Miyaji, Noriaki
    Yamashita, Kosuke
    Koizumi, Mitsuru
    Terauchi, Takashi
    ANNALS OF NUCLEAR MEDICINE, 2022, 36 (09) : 834 - 841