Neurotransmitter disturbances caused by methylmercury exposure: Microbiota-gut-brain interaction

被引:10
|
作者
Wang, Wenjuan [1 ]
Chen, Fang [1 ]
Zhang, Li [1 ]
Wen, Fuli [1 ]
Yu, Qing [1 ]
Li, Ping [1 ,2 ,3 ]
Zhang, Aihua [1 ,3 ]
机构
[1] Guizhou Med Univ, Sch Publ Hlth, Key Lab Environm Pollut Monitoring & Dis Control, Minist Educ, Guiyang 550025, Peoples R China
[2] Inst Geochem, Chinese Acad Sci, State Key Lab Environm Geochem, Guiyang 550081, Peoples R China
[3] Guizhou Med Univ, Publ Hlth, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
Methylmercury; Neurotransmitter metabolism; Cognitive function; Gut barrier; Gut-brain axis; MERCURY; BIOACCUMULATION; RECEPTORS; 5-HT1A; RATS;
D O I
10.1016/j.scitotenv.2023.162358
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The fetal and early postnatal stages are periods of rapid brain development, during which, methylmercury (MeHg) ex-posure can cause lasting cognitive impairments. MeHg exposure disrupts neurotransmitter metabolites, which in-creased susceptibility to neurological responses. However, the neurotoxic mechanism underlying the MeHg-induced disruption of neurotransmitter metabolism requires further exploration. To this end, female Sprague-Dawley (SD) rats were administered NaCl (control group) or MeHg (0.6 mg/kg, 1.2 mg/kg and 2.4 mg/ kg body weight (bw), where the body weight refers to the dams) during the perinatal period, and then changes in neurotransmitter profiles and the gut microbiota of offspring were detected. The results showed that tryptophan (Trp) and tyrosine (Tyr) path-way neurotransmitter metabolites, including serotonin (5-HT), 5-hydroxy indole acetic acid (5-HIAA), N-acetyl-5-hydroxytryptamin (NAS), Tyr, dopamine (DA) and epinephrine (E), were significantly changed, and the Kynurenine/Tryptophan (Kyn/Trp) ratio was increased in the MeHg-treated groups. Meanwhile, acetylcholine (ACh) and neurotransmitters involved in the amino acid pathway were significantly reduced. Notably, MeHg treat-ment induced a significant reduction in tight junctions in the colon and hippocampal tissue. Furthermore, fecal microbiota analysis indicated that the diversity and composition characteristics were significantly altered by MeHg exposure. Mediation analysis showed that the gut microbiota mediated the effect of MeHg treatment on the neuro-transmitter expression profiles. The present findings shed light on the regulatory role of the gut microbiota in MeHg-disrupted neurotransmitter metabolic pathways and the potential impact of perinatal MeHg treatment on the "cross-talk" between the gut and brain.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Pesticide exposure and the microbiota-gut-brain axis
    Rie Matsuzaki
    Eoin Gunnigle
    Violette Geissen
    Gerard Clarke
    Jatin Nagpal
    John F. Cryan
    The ISME Journal, 2023, 17 : 1153 - 1166
  • [2] Pesticide exposure and the microbiota-gut-brain axis
    Matsuzaki, Rie
    Gunnigle, Eoin
    Geissen, Violette
    Clarke, Gerard
    Nagpal, Jatin
    Cryan, John F.
    ISME JOURNAL, 2023, 17 (08): : 1153 - 1166
  • [3] THE MICROBIOTA-GUT-BRAIN AXIS
    Cryan, John F.
    O'Riordan, Kenneth J.
    Cowan, Caitlin S. M.
    Sandhu, Kiran V.
    Bastiaanssen, Thomaz F. S.
    Boehme, Marcus
    Codagnone, Martin G.
    Cussotto, Sofia
    Fulling, Christine
    Golubeva, Anna V.
    Guzzetta, Katherine E.
    Jaggar, Minal
    Long-Smith, Caitriona M.
    Lyte, Joshua M.
    Martin, Jason A.
    Molinero-Perez, Alicia
    Moloney, Gerard
    Morelli, Emanuela
    Morillas, Enrique
    O'Connor, Rory
    Cruz-Pereira, Joana S.
    Peterson, Veronica L.
    Rea, Kieran
    Ritz, Nathaniel L.
    Sherwin, Eoin
    Spichak, Simon
    Teichman, Emily M.
    van de Wouw, Marcel
    Ventura-Silva, Ana Paula
    Wallace-Fitzsimons, Shauna E.
    Hyland, Niall
    Clarke, Gerard
    Dinan, Timothy G.
    PHYSIOLOGICAL REVIEWS, 2019, 99 (04) : 1877 - 2013
  • [4] Neurotransmitter and Intestinal Interactions: Focus on the Microbiota-Gut-Brain Axis in Irritable Bowel Syndrome
    Chen, Minjia
    Ruan, Guangcong
    Chen, Lu
    Ying, Senhong
    Li, Guanhu
    Xu, Fenghua
    Xiao, Zhifeng
    Tian, Yuting
    Lv, Linling
    Ping, Yi
    Cheng, Yi
    Wei, Yanling
    FRONTIERS IN ENDOCRINOLOGY, 2022, 13
  • [5] Neuropeptides and the Microbiota-Gut-Brain Axis
    Holzer, Peter
    Farzi, Aitak
    MICROBIAL ENDOCRINOLOGY: THE MICROBIOTA-GUT-BRAIN AXIS IN HEALTH AND DISEASE, 2014, 817 : 195 - 219
  • [6] The microbiota-gut-brain axis in obesity
    Torres-Fuentes, Cristina
    Schellekens, Harriet
    Dinan, Timothy G.
    Cryan, John F.
    LANCET GASTROENTEROLOGY & HEPATOLOGY, 2017, 2 (10): : 747 - 756
  • [7] The Microbiota-Gut-Brain Axis and Epilepsy
    Yue, Qiang
    Cai, Mingfei
    Xiao, Bo
    Zhan, Qiong
    Zeng, Chang
    CELLULAR AND MOLECULAR NEUROBIOLOGY, 2022, 42 (02) : 439 - 453
  • [8] SnapShot: The microbiota-gut-brain axis
    Agirman, Gulistan
    Hsiao, Elaine Y.
    CELL, 2021, 184 (09) : 2524 - 2525
  • [9] Diet, Gut Physiology, and the Microbiota-Gut-Brain Axis
    Roy, N. C.
    PROCEEDINGS OF THE NUTRITION SOCIETY, 2024, 83 (OCE1)
  • [10] Gut feelings: the microbiota-gut-brain axis on steroids
    So, Sik Yu
    Savidge, Tor C.
    AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2022, 322 (01): : G1 - G20