Stress Relaxation Behaviors of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)

被引:0
|
作者
Park, Jinkyu [1 ]
Kim, Youngwook [1 ]
Jang, Yunjae [2 ]
Jung, Minho [2 ]
Lee, Eunhye [2 ]
Kang, Ho-Jong [1 ]
机构
[1] Dankook Univ, Dept Polymer Sci & Engn, 152 Jukjeon Ro, Yongin 16890, Gyeonggi Do, South Korea
[2] CJ Cheiljedang Corp, 55 Gwanggyo-Ro,42Beon Gil, Suwon 16495, Gyeonggi Do, South Korea
关键词
biodegradable polymer; poly(3-hydroxybutyrate-co-4-hydroxybutyrate); stress relaxation; generalized Max well model; relaxation time; POLYHYDROXYALKANOATE; CRYSTALLIZATION; PHB;
D O I
10.7317/pk.2024.48.1.77
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Stress relaxation behavior of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)) copolymer in melt processing was studied. The effect of 4HB content in copolymer on stress relaxation was mainly investigated and it was understood by generalized Maxwell viscoelastic model. As the 4HB content increased, the stress relaxation occurred quickly due to the flexibility of 4HB chain compare to 3HB chain. It was also found that the lowering of randomness in copolymer chain sequence prohibited the stress relaxation due to the increase of crystallinity in copolymer. Stress relaxation can be controlled by the blending of P(3HB-co-4HB) having different 4HB content. The relaxation time of P(3HB-co-4HB) was evaluated by generalized Maxwell viscoelastic model. It was found that the relaxation time was more closely related to the 4HB content than crystallinity of copolymer.
引用
收藏
页码:77 / 85
页数:9
相关论文
共 50 条
  • [1] Crystallization behaviors and morphology of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate)
    Wen, Xing
    Lu, Xiuping
    Peng, Quan
    Zhu, Fuyan
    Zheng, Ning
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2012, 109 (02) : 959 - 966
  • [2] Crystallization behaviors and morphology of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate)
    Xing Wen
    Xiuping Lu
    Quan Peng
    Fuyan Zhu
    Ning Zheng
    Journal of Thermal Analysis and Calorimetry, 2012, 109 : 959 - 966
  • [3] Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)
    Saito, Y
    Nakamura, S
    Hiramitsu, M
    Doi, Y
    POLYMER INTERNATIONAL, 1996, 39 (03) : 169 - 174
  • [4] Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha
    Kim, JS
    Lee, BH
    Kim, BS
    BIOCHEMICAL ENGINEERING JOURNAL, 2005, 23 (02) : 169 - 174
  • [5] Isothermal crystallization of poly[3-hydroxybutyrate-co-4-hydroxybutyrate] mixtures
    Zhang, Tao
    Jang, Yunjae
    Jung, Minho
    Lee, Eunhye
    Kang, Ho-Jong
    MACROMOLECULAR RESEARCH, 2023, 31 (05) : 443 - 453
  • [6] Microbial Degradation of Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate) in Soil
    Xing Wen
    Xiuping Lu
    Journal of Polymers and the Environment, 2012, 20 : 381 - 387
  • [7] Biosynthesis and biocompatibility of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate)
    Chanprateep, Suchada
    Buasri, Ketsunee
    Muangwong, Aumtiga
    Utiswannakul, Phonpisit
    POLYMER DEGRADATION AND STABILITY, 2010, 95 (10) : 2003 - 2012
  • [8] Isothermal crystallization of poly[3-hydroxybutyrate-co-4-hydroxybutyrate] mixtures
    Tao Zhang
    Yunjae Jang
    Minho Jung
    Eunhye Lee
    Ho-Jong Kang
    Macromolecular Research, 2023, 31 : 443 - 453
  • [9] Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) produced by Comamonas acidovorans
    Mitomo, H
    Hsieh, WC
    Nishiwaki, K
    Kasuya, K
    Doi, Y
    POLYMER, 2001, 42 (08) : 3455 - 3461
  • [10] MICROBIAL SYNTHESIS AND CHARACTERIZATION OF POLY(3-HYDROXYBUTYRATE-CO-4-HYDROXYBUTYRATE)
    NAKAMURA, S
    DOI, Y
    SCANDOLA, M
    MACROMOLECULES, 1992, 25 (17) : 4237 - 4241