Global Terrestrial Evapotranspiration Estimation from Visible Infrared Imaging Radiometer Suite (VIIRS) Data

被引:0
|
作者
Xie, Zijing [1 ]
Yao, Yunjun [1 ]
Tang, Qingxin [2 ]
Zhang, Xueyi [1 ,3 ]
Zhang, Xiaotong [1 ]
Jiang, Bo [1 ]
Xu, Jia [4 ]
Yu, Ruiyang [1 ]
Liu, Lu [1 ]
Ning, Jing [1 ]
Fan, Jiahui [1 ]
Zhang, Luna [1 ]
机构
[1] Beijing Normal Univ, Fac Geog Sci, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
[2] Liaocheng Univ, Sch Geog & Environm, Liaocheng 252000, Peoples R China
[3] CMA, Key Lab Meteorol Disaster Monitoring & Early Warni, Yinchuan 750002, Peoples R China
[4] Univ Melbourne, Fac Engn & IT, Dept Infrastructure Engn, Melbourne, Vic 3010, Australia
关键词
terrestrial evapotranspiration; deep neural networks; VIIRS; random forest; Bayesian model averaging; LATENT-HEAT FLUX; SHORTWAVE RADIATION; LAND EVAPORATION; NET-RADIATION; RIVER-BASIN; MODIS; TEMPERATURE; ALGORITHM; PRODUCTS; MACHINE;
D O I
10.3390/rs16010044
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
It is a difficult undertaking to reliably estimate global terrestrial evapotranspiration (ET) using the Visible Infrared Imaging Radiometer Suite (VIIRS) at high spatial and temporal scales. We employ deep neural networks (DNN) to enhance the estimation of terrestrial ET on a global scale using satellite data. We accomplish this by merging five algorithms that are process-based and that make use of VIIRS data. These include the Shuttleworth-Wallace dual-source ET method (SW), the Priestley-Taylor-based ET algorithm (PT-JPL), the MOD16 ET product algorithm (MOD16), the modified satellite-based Priestley-Taylor ET algorithm (MS-PT), and the simple hybrid ET algorithm (SIM). We used 278 eddy covariance (EC) tower sites from 2012 to 2022 to validate the DNN approach, comparing it to Bayesian model averaging (BMA), gradient boosting regression tree (GBRT) and random forest (RF). The validation results demonstrate that the DNN significantly improves the accuracy of daily ET estimates when compared to three other merging methods, resulting in the highest average determination coefficients (R2, 0.71), RMSE (21.9 W/m2) and Kling-Gupta efficiency (KGE, 0.83). Utilizing the DNN, we generated a VIIRS ET product with a 500 m spatial resolution for the years 2012-2020. The DNN method serves as a foundational approach in the development of a sustained and comprehensive global terrestrial ET dataset. The basis for characterizing and analyzing global hydrological dynamics and carbon cycling is provided by this dataset.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Occurrence frequencies and regional variations in Visible Infrared Imaging Radiometer Suite (VIIRS) global active fires
    Li, Peng
    Xiao, Chiwei
    Feng, Zhiming
    Li, Wenjun
    Zhang, Xianzhou
    [J]. GLOBAL CHANGE BIOLOGY, 2020, 26 (05) : 2970 - 2987
  • [2] OVERVIEW OF CAL VAL AND ENVIRONMENT DATA PRODUCT PERFORMANCE DERIVED FROM VISIBLE INFRARED IMAGING RADIOMETER SUITE (VIIRS)
    Zhou, Lihang
    Divakarla, Murty
    Liu, Xingpin
    Weng, Fuzhong
    Cao, Changyong
    Csiszar, Ivan
    Goldberg, Mitch
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1281 - 1284
  • [3] Visible Infrared Imaging Radiometer Suite (VIIRS) and Uncertainty in the Ocean Color Calibration Methodology
    Turpie, Kevin R.
    Eplee, Robert E., Jr.
    Meister, Gerhard
    [J]. EARTH OBSERVING SYSTEMS XX, 2015, 9607
  • [4] The visible infrared imaging radiometer suite
    Murphy, R. E.
    Ardanuy, Phillip
    Deluccia, Frank J.
    Clement, J. E.
    Schueler, Carl F.
    [J]. EARTH SCIENCE SATELLITE REMOTE SENSING: SCIENCE AND INSTRUMENTS, VOL 1, 2006, : 199 - +
  • [5] Methods for Global Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer Suite Data
    Elvidge, Christopher D.
    Zhizhin, Mikhail
    Baugh, Kimberly
    Hsu, Feng-Chi
    Ghosh, Tilottama
    [J]. ENERGIES, 2016, 9 (01):
  • [6] Estimation of Land Surface Incident and Net Shortwave Radiation from Visible Infrared Imaging Radiometer Suite (VIIRS) Using an Optimization Method
    Zhang, Yi
    Liang, Shunlin
    He, Tao
    Wang, Dongdong
    Yu, Yunyue
    [J]. REMOTE SENSING, 2020, 12 (24) : 1 - 24
  • [7] Using Visible Infrared Imaging Radiometer Suite (VIIRS) Imagery to identify and analyze light pollution
    Nurbandi, Wahyu
    Yusuf, Febrina Ramadhani
    Prasetya, Ruwanda
    Afrizal, Mousafi Dimas
    [J]. 2ND INTERNATIONAL CONFERENCE OF INDONESIAN SOCIETY FOR REMOTE SENSING (ICOIRS), 2017, 47
  • [8] Automated cloud detection and classification of data collected by the visible infrared imager radiometer suite (VIIRS)
    Hutchison, KD
    Roskovensky, JK
    Jackson, JM
    Heidinger, AK
    Kopp, TJ
    Pavolonis, MJ
    Frey, R
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (21) : 4681 - 4706
  • [9] Impact of environmental pollution on the retrieval of AOD products from Visible Infrared Imaging Radiometer Suite (VIIRS) over wuhan
    Ma, Yingying
    Liu, Boming
    Gong, Wei
    Shi, Yifan
    Jin, Shikuan
    [J]. ATMOSPHERIC POLLUTION RESEARCH, 2019, 10 (06) : 2063 - 2071
  • [10] System engineering of the Visible Infrared Imaging Radiometer Suite (VIIRS): improvements in imaging radiometry enabled by innovation driven by requirements
    Puschell, Jeffery J.
    Ardanuy, Phillip E.
    Schueler, Carl F.
    [J]. REMOTE SENSING SYSTEM ENGINEERING VI, 2016, 9977