Bifurcations and multistability in a physically extended Lorenz system for rotating convection

被引:2
|
作者
Pati, N. C. [1 ]
机构
[1] Birla Inst Technol Mesra, Dept Math, Ranchi 835215, Jharkhand, India
来源
EUROPEAN PHYSICAL JOURNAL B | 2023年 / 96卷 / 08期
关键词
RAYLEIGH-BENARD CONVECTION; CHAOS; STATE; MODEL;
D O I
10.1140/epjb/s10051-023-00585-0
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We present a four-dimensional generalized Lorenz system for rotating weakly shear-thinning fluid layer subjected to heating from below. Various bifurcation patterns enroute to chaotic convection are reported. For certain parameter values, the system exhibits coexisting multiple attractors with different heterogeneous combinations viz., fixed point-periodic, multi-periodic with different periods, fixed point-chaotic, and periodic-chaotic depending upon initial conditions and system parameters. For basin of attraction corresponding to the coexisting attractors, both smooth and fractal basin boundaries can occur. The uncertainty fractional method is employed in exploring the fractality of the basin boundaries.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Bifurcations and multistability in a physically extended Lorenz system for rotating convection
    N. C. Pati
    The European Physical Journal B, 2023, 96
  • [2] A physically extended Lorenz system
    Moon, Sungju
    Seo, Jaemyeong Mango
    Han, Beom-Soon
    Park, Junho
    Baik, Jong-Jin
    CHAOS, 2019, 29 (06)
  • [3] Hopf bifurcations in an extended Lorenz system
    Zhiming Zhou
    Gheorghe Tigan
    Zhiheng Yu
    Advances in Difference Equations, 2017
  • [4] Hopf bifurcations in an extended Lorenz system
    Zhou, Zhiming
    Tigan, Gheorghe
    Yu, Zhiheng
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [5] Coexisting Attractors in a Physically Extended Lorenz System
    Moon, Sungju
    Baik, Jong-Jin
    Hong, Seong-Ho
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (05):
  • [6] Multistability in rotating spherical shell convection
    Feudel, F.
    Seehafer, N.
    Tuckerman, L. S.
    Gellert, M.
    PHYSICAL REVIEW E, 2013, 87 (02):
  • [7] Qualitative Properties of a Physically Extended Six-Dimensional Lorenz System
    Zhang, Fuchen
    Zhou, Ping
    Xu, Fei
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (07):
  • [8] Multistability in the Lorenz System: A Broken Butterfly
    Li, Chunbiao
    Sprott, Julien Clinton
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (10):
  • [9] Finite Cascades of Pitchfork Bifurcations and Multistability in Generalized Lorenz-96 Models
    Fetzer, Anouk F. G.
    Sterk, Alef E.
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2020, 25 (04)
  • [10] Bifurcations of rotating waves in rotating spherical shell convection
    Feudel, F.
    Tuckerman, L. S.
    Gellert, M.
    Seehafer, N.
    PHYSICAL REVIEW E, 2015, 92 (05):