Effect of Bit Depth on Cloud Segmentation of Remote-Sensing Images

被引:2
|
作者
Liao, Lingcen [1 ,2 ]
Liu, Wei [1 ,2 ]
Liu, Shibin [1 ,2 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Coll Resource & Environm, Beijing 100049, Peoples R China
基金
对外科技合作项目(国际科技项目);
关键词
bit depth; remote sensing; semantic segmentation; cloud; deep learning; DETECTION ALGORITHM; NETWORK;
D O I
10.3390/rs15102548
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Due to the cloud coverage of remote-sensing images, the ground object information will be attenuated or even lost, and the texture and spectral information of the image will be changed at the same time. Accurately detecting clouds from remote-sensing images is of great significance to the field of remote sensing. Cloud detection utilizes semantic segmentation to classify remote-sensing images at the pixel level. However, previous studies have focused on the improvement of algorithm performance, and little attention has been paid to the impact of bit depth of remote-sensing images on cloud detection. In this paper, the deep semantic segmentation algorithm UNet is taken as an example, and a set of widely used cloud labeling dataset "L8 Biome" is used as the verification data to explore the relationship between bit depth and segmentation accuracy on different surface landscapes when the algorithm is used for cloud detection. The research results show that when the image is normalized, the effect of cloud detection with a 16-bit remote-sensing image is slightly better than that of an 8-bit remote sensing image; when the image is not normalized, the gap will be widened. However, using 16-bit remote-sensing images for training will take longer. This means data selection and classification do not always need to follow the highest possible bit depth when doing cloud detection but should consider the balance of efficiency and accuracy.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [1] ON REMOVING CLOUD INTERFERENCE IN REMOTE-SENSING IMAGES
    易克初
    王文涛
    Journal of Electronics(China), 1984, (01) : 18 - 27
  • [2] Superpixel segmentation and machine learning classification algorithm for cloud detection in remote-sensing images
    Shi, Yueting
    Wang, Weijiang
    Gong, Qishu
    Li, Dingyi
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (20): : 6675 - 6679
  • [3] Adaptive segmentation of remote-sensing images for aerial surveillance
    Baik, SW
    Ahn, SM
    Lee, JW
    Win, KK
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2003, 2756 : 549 - 554
  • [4] Unsupervised texture segmentation for multispectral remote-sensing images
    Tseng, DC
    Tsai, HM
    Lai, CC
    FOURTEENTH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1 AND 2, 1998, : 1630 - 1632
  • [5] Segmentation of remote-sensing images by incremental neural network
    Kurnaz, MN
    Dokur, Z
    Ölmez, T
    PATTERN RECOGNITION LETTERS, 2005, 26 (08) : 1096 - 1104
  • [6] Segmentation of remote-sensing images by artificial neural networks
    Ölmez, T
    Dokur, Z
    PROCEEDINGS OF THE IEEE 12TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, 2004, : 84 - 86
  • [7] Scene Learning for Cloud Detection on Remote-Sensing Images
    An, Zhenyu
    Shi, Zhenwei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (08) : 4206 - 4222
  • [8] Interactive Segmentation for Change Detection in Multispectral Remote-Sensing Images
    Hichri, Haikel
    Bazi, Yakoub
    Alajlan, Naif
    Malek, Salim
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (02) : 298 - 302
  • [9] Segmentation of remote-sensing images by supervised TS-MRF
    Poggi, G
    Scarpa, G
    Zerubia, J
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 1867 - 1870
  • [10] Hierarchical MRF-based segmentation of remote-sensing images
    Gaetano, R.
    Poggi, G.
    Scarpa, G.
    2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 1121 - +