MOF-derived heterostructured C@VO2 @V2O5 for stable aqueous zinc-ion batteries cathode

被引:36
|
作者
Tong, Yunxiao [1 ]
Zhao, Ying [1 ]
Luo, Min [1 ]
Su, Senda [1 ]
Yang, Yongqing [1 ]
Zang, Ying [1 ]
Li, Xiaoman [1 ]
Wang, Lifeng [1 ]
Fang, Junzhuo [1 ]
机构
[1] Ningxia Univ, Sch Chem & Chem Engn, State Key Lab High efficiency Utilizat Coal & Gree, Yinchuan 750021, Ningxia, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal -organic framework; Heterostructure; Porous carbon skeleton; Synergistic Energy Mechanism; Aqueous Zinc -ion batteries;
D O I
10.1016/j.jallcom.2022.167681
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rationally designed cathode materials with high specific capacity and excellent cycling stability are in-dispensable for stable and highly efficient aqueous zinc-ion batteries (AZIBs). The mesoporous nano -composite C@VO2 @V2O5 is successfully synthesized using the vanadium-based metal-organic framework as precursor by carbonization and subsequent oxidation processes. As the AZIBs cathode, the MOF-derived heterostructured materials display a high specific capacity (376 mAh g-1 at 0.05 A g-1), excellent rate capability (178 mAh g-1 at 5 A g-1) and outstanding long-life cycling (90.3% capacity retention for 2000 cycles at 5 A g-1). The promising electrochemical performance is attributed to abundant Zn2+ active sites and rapid intercalation kinetics of Zn2+ originated from the heterojunction structure at the two-phase (VO2 @V2O5) interface and mesoporous structure, and the enhanced electron transport efficiency brought by the the porous carbon skeleton with high conductivity. Furthermore, the synergistic effect of dual-ion co -in-tercalated energy storage mechanism endows C@VO2 @V2O5 with impressive electrochemical performance. This work demonstrates MOF-derived hetero-structured materials as an alternative cathode for high cyclic stability AZIBs in the future.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Constructing MOF-derived V2O5 as advanced cathodes for aqueous zinc ion batteries
    Yin, Chengjie
    Wang, Hui
    Pan, Chengling
    Li, Zhi
    Hu, Jinsong
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [2] Na+ Intercalated V2O5 Derived from V-MOF as High-Performance Cathode for Aqueous Zinc-Ion Batteries
    Liu, Mengmei
    Li, Zhihua
    Zhang, Yibo
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (11)
  • [3] The Current Developments and Perspectives of V2O5 as Cathode for Rechargeable Aqueous Zinc-Ion Batteries
    Zhang, Wenwei
    Zuo, Chunli
    Tang, Chen
    Tang, Wen
    Lan, Binxu
    Fu, Xudong
    Dong, Shijie
    Luo, Ping
    ENERGY TECHNOLOGY, 2021, 9 (02)
  • [4] Controllable Synthesis of Skeletonized V2O5 Microspheres Derived from a V-MOF for Aqueous Zinc-Ion Batteries
    Yu, Ningning
    Li, Man
    Chen, Xiaowen
    Xu, Lei
    Wang, Wenyu
    Wei, Fuxiang
    Sui, Yanwei
    Yan, Qingqing
    Wang, Song
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (23) : 12043 - 12051
  • [5] Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries
    Chen, Xuyong
    Wang, Liubin
    Li, Hang
    Cheng, Fangyi
    Chen, Jun
    JOURNAL OF ENERGY CHEMISTRY, 2019, 38 : 20 - 25
  • [6] Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries
    Xuyong Chen
    Liubin Wang
    Hang Li
    Fangyi Cheng
    Jun Chen
    Journal of Energy Chemistry , 2019, (11) : 20 - 25
  • [7] K-doped V2O5 derived from V-MOF precursor as high-performance cathode for aqueous zinc-ion batteries
    Liu, Mengmei
    Li, Zhihua
    Zhang, Yibo
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 942
  • [8] Facile hydrothermal synthesis of V2O5 nanofibers as cathode material for aqueous zinc-ion batteries
    Liu, Xiaodong
    Liu, Chunyang
    Wang, Zhiqiang
    Chen, Hongming
    Liu, Zijin
    Yang, Jiaqi
    Lau, Woon-Ming
    Zhou, Dan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 896
  • [9] Cu-MOF-derived and porous Cu0.26V2O5@C composite cathode for aqueous zinc-ion batteries
    Wang, Xiaowei
    Zhang, Bao
    Feng, Jianmin
    Wang, Liqun
    Wu, Bin
    Zhang, Jiafeng
    Ou, Xing
    Hou, Feng
    Liang, Ji
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2020, 26
  • [10] V-MOF@graphene derived two-dimensional hierarchical V2O5 @graphene as high-performance cathode for aqueous zinc-ion batteries
    Gong, L.
    Zhang, Y.
    Li, Z.
    MATERIALS TODAY CHEMISTRY, 2022, 23