Random hypergraphs, random simplicial complexes and their Künneth-type formulae

被引:0
|
作者
Ren, Shiquan [1 ]
Wu, Chengyuan [2 ]
Wu, Jie [3 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
[2] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
[3] Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing 101408, Peoples R China
基金
中国博士后科学基金;
关键词
Hypergraph; simplicial complex; randomness; probability; HOMOLOGICAL CONNECTIVITY; TOP HOMOLOGY; COHOMOLOGY; THRESHOLD; TOPOLOGY;
D O I
10.1142/S021821652350075X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Random hypergraphs and random simplicial complexes on finite vertices were studied by [M. Farber, L. Mead and T. Nowik, Random simplicial complexes, duality and the critical dimension, J. Topol. Anal. 41(1) (2022) 1-32]. The map algebra on random sub-hypergraphs of a fixed simplicial complex, which detects relations between random sub-hypergraphs and random simplicial sub-complexes, was studied by the authors of this paper. In this paper, we study the map algebra on random sub-hypergraphs of a fixed hypergraph. We give some algorithms generating random hypergraphs and random simplicial complexes by considering the actions of the map algebra on the space of probability distributions. We prove some Kunneth-type formulae for random hypergraphs and random simplicial complexes on finite vertices.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Maps on random hypergraphs and random simplicial complexes
    Ren, Shiquan
    Wu, Chengyuan
    Wu, Jie
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2022, 31 (03)
  • [2] Random Simplicial Complexes
    Costa, Armindo
    Farber, Michael
    [J]. CONFIGURATION SPACES: GEOMETRY, TOPOLOGY AND REPRESENTATION THEORY, 2016, 14 : 129 - 153
  • [3] Exponential random simplicial complexes
    Zuev, Konstantin
    Eisenberg, Or
    Krioukov, Dmitri
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (46)
  • [4] GIGANTIC RANDOM SIMPLICIAL COMPLEXES
    Grygierek, Jens
    Juhnke-Kubitzke, Martina
    Reitzner, Matthias
    Romer, Tim
    Rondigs, Oliver
    [J]. HOMOLOGY HOMOTOPY AND APPLICATIONS, 2020, 22 (01) : 297 - 318
  • [5] DYNAMICAL MODELS FOR RANDOM SIMPLICIAL COMPLEXES
    Fountoulakis, Nikolaos
    Iyer, Tejas
    Mailler, Cecile
    Sulzbach, Henning
    [J]. ANNALS OF APPLIED PROBABILITY, 2022, 32 (04): : 2860 - 2913
  • [6] Integral Homology of Random Simplicial Complexes
    Tomasz Łuczak
    Yuval Peled
    [J]. Discrete & Computational Geometry, 2018, 59 : 131 - 142
  • [7] Integral Homology of Random Simplicial Complexes
    Auczak, Tomasz
    Peled, Yuval
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2018, 59 (01) : 131 - 142
  • [8] Simplicial Kirchhoff index of random complexes
    Kook, Woong
    Lee, Kang-Ju
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2024, 159
  • [9] Topology of random simplicial complexes: a survey
    Kahle, Matthew
    [J]. ALGEBRAIC TOPOLOGY: APPLICATIONS AND NEW DIRECTIONS, 2014, 620 : 201 - 221
  • [10] ON TOPOLOGICAL MINORS IN RANDOM SIMPLICIAL COMPLEXES
    Gundert, Anna
    Wagner, Uli
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (04) : 1815 - 1828