Mechanical behaviors of coral sand and relationship between particle breakage and plastic work

被引:38
|
作者
Gao, Ran [1 ,2 ]
Ye, Jianhong [1 ]
机构
[1] Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Coral calcareous sand; Triaxial test with conventional and high; confining pressure; Critical state; Particle breakage; Plastic work; Breakage index; CRITICAL-STATE; CALCAREOUS SAND; SOIL; ISLANDS; MODEL; SHAPE;
D O I
10.1016/j.enggeo.2023.107063
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
As a special geotechnical material, coral calcareous sand (CCS), also widely known as coral sand or calcareous sand, surely has similarities and differences in mechanical behaviors with terrigenous sand. As the foundation material of some important structures such as ports, aircraft runways, and marine lighthouses in the South China Sea (SCS), it is necessary and has engineering significance to study its basic mechanical properties. Taking the CCS sampled from a reclaimed land on the top of a natural coral reef in the SCS as the typical case, a series of drained and undrained triaxial shear tests were performed under conventional and high confining pressure in this study. It is found that CCS has all the characteristics that all granular materials should have. However, since the irregular particle morphology and high roughness particle surface, CCS presents a great initial shear stiffness which is significantly different from that of quartz sand. Only some CCS specimens can strictly reach the critical state, and the feature lines in the p'-q space, i.e., critical state line, and phase transformation line are not affected by the factors such as the consolidation confining pressure, initial dry density, and drainage condition. However, the critical state line in the e-lnp' space is not unique, but dependent on the initial dry density. Based on the particle breakage measurement, a new description for the relationship between particle crushing and plastic work is proposed. It could provide an experimental basis for the development of a constitutive model considering the particle breakage for CCS.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Particle breakage in triaxial shear of a coral sand
    Yu, Fangwei
    SOILS AND FOUNDATIONS, 2018, 58 (04) : 866 - 880
  • [2] Multiscale simulation study for mechanical characteristics of coral sand influenced by particle breakage
    Liu, Feng
    Tang, Hongxiang
    Shahin, Mohamed A.
    Zhao, Honghua
    Karrech, Ali
    Zhu, Feng
    Zhou, He
    POWDER TECHNOLOGY, 2025, 449
  • [3] The detailed particle breakage around the pile in coral sand
    Yu Peng
    Hanlong Liu
    Chi Li
    Xuanming Ding
    Xin Deng
    Chunyan Wang
    Acta Geotechnica, 2021, 16 : 1971 - 1981
  • [4] Dynamic Characteristics of Coral Sand in the Condition of Particle Breakage
    Long, Hui
    Zhuang, Ke
    Deng, Bo
    Jiao, Jianlin
    Zuo, Junjie
    You, Enlu
    GEOFLUIDS, 2022, 2022
  • [5] The detailed particle breakage around the pile in coral sand
    Peng, Yu
    Liu, Hanlong
    Li, Chi
    Ding, Xuanming
    Deng, Xin
    Wang, Chunyan
    ACTA GEOTECHNICA, 2021, 16 (06) : 1971 - 1981
  • [6] Study on the interaction between particle shape and particle breakage of coral sand by discrete element method
    Liu, Xuejun
    Zeng, Kaifeng
    Xiang, Fuyu
    Wang, Chunhai
    Hou, Xianming
    Li, Yanjun
    FRONTIERS IN EARTH SCIENCE, 2024, 12
  • [7] Mechanical behaviors of interaction between coral sand and structure surface
    Feng Ze-kang
    Xu Wen-jie
    Meng Qing-shan
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2020, 27 (11) : 3436 - 3449
  • [8] Elastic-plastic response and particle breakage in marine coral sand: Roles of fines and density state
    Li, Xue
    Zhou, Wan-Huan
    Liu, Jiankun
    Wang, Chao
    OCEAN ENGINEERING, 2025, 323
  • [9] Mechanical characteristics and particle breakage of coral sand under one-dimensional repeated loading
    Chunyan Wang
    Xuanming Ding
    Zhen-Yu Yin
    Yu Peng
    Zhixiong Chen
    Acta Geotechnica, 2022, 17 : 3117 - 3130
  • [10] Mechanical characteristics and particle breakage of coral sand under one-dimensional repeated loading
    Wang, Chunyan
    Ding, Xuanming
    Yin, Zhen-Yu
    Peng, Yu
    Chen, Zhixiong
    ACTA GEOTECHNICA, 2022, 17 (07) : 3117 - 3130