Twin-field quantum key distribution (TFQKD) enables two distant parties to establish a shared secret key, by interfering weak coherent pulses (WCPs) in an intermediate measuring station. This allows TFQKD to reach greater distances than traditional QKD schemes and makes it the only scheme capa-ble of beating the repeaterless bound on the bipartite private capacity. Here, we generalize TFQKD to the multipartite scenario. Specifically, we propose a practical conference key agreement protocol that only uses WCPs and linear optics and prove its security with a multiparty decoy-state method. Our protocol allows an arbitrary number of parties to establish a secret conference key by single-photon interference, enabling it to overcome recent bounds on the rate at which conference keys can be established in quantum networks without a repeater.