Principal graph embedding convolutional recurrent network for traffic flow prediction

被引:6
|
作者
Han, Yang [1 ]
Zhao, Shengjie [1 ,2 ,3 ]
Deng, Hao [1 ]
Jia, Wenzhen [1 ]
机构
[1] Tongji Univ, Sch Software Engn, Shanghai, Peoples R China
[2] Key Lab Embedded Syst & Serv Comp, Shanghai, Peoples R China
[3] Engn Res Ctr Key Software Technol Smart City Perce, Minist Educ, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Data drift; Principal component analysis; Graph convolution network; GRU; Traffic flow prediction;
D O I
10.1007/s10489-022-04211-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As an essential part of traffic management, traffic flow prediction attracts worldwide attention to intelligent traffic systems (ITSs). Complicated spatial dependencies due to the well-connected road networks and time-varying traffic dynamics make this problem extremely challenging. Recent works have focused on modeling this complicated spatial-temporal dependence through graph neural networks with a fixed weighted graph or an adaptive adjacency matrix. However, fixed graph methods cannot address data drift due to changes in the road network structure, and adaptive methods are time consuming and prone to be overfitting because the learning algorithm thoroughly optimizes the adaptive matrix. To address this issue, we propose a principal graph embedding convolutional recurrent network (PGECRN) for accurate traffic flow prediction. First, we propose the adjacency matrix graph embedding (AMGE) generation algorithm to solve the data drift problem. AMGE can model the distribution of spatiotemporal series after data drift by extracting the principal components of the original adjacency matrix and performing an adaptive transformation. At the same time, it has fewer parameters, alleviating overfitting. Then, except for the essential spatial correlations, traffic flow data are also temporally dynamic. We utilize temporal variation by integrating gated recurrent units (GRU) and AMGE to comprise the proposed model. Finally, PGECRN is evaluated on two real-world highway datasets, PeMSD4 and PeMSD8. Compared with the existing baselines, the better prediction accuracy of our model shows that it can accurately and efficiently model traffic flow.
引用
收藏
页码:17809 / 17823
页数:15
相关论文
共 50 条
  • [1] Principal graph embedding convolutional recurrent network for traffic flow prediction
    Yang Han
    Shengjie Zhao
    Hao Deng
    Wenzhen Jia
    [J]. Applied Intelligence, 2023, 53 : 17809 - 17823
  • [2] GECRAN: Graph embedding based convolutional recurrent attention network for traffic flow prediction
    Yan, Jianqiang
    Zhang, Lin
    Gao, Yuan
    Qu, Boting
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 256
  • [3] Dynamic Graph Convolutional Recurrent Network With Spatiotemporal Category Information Embedding for Traffic Flow Prediction
    Zhu, Guodong
    Niu, Yunyun
    Du, Songzhi
    Wang, Pengcheng
    [J]. IEEE Internet of Things Journal, 2024, 11 (24) : 39473 - 39486
  • [4] Gated Recurrent Graph Convolutional Attention Network for Traffic Flow Prediction
    Feng, Xiaoyuan
    Chen, Yue
    Li, Hongbo
    Ma, Tian
    Ren, Yilong
    [J]. SUSTAINABILITY, 2023, 15 (09)
  • [5] Cellular Network Traffic Prediction with Hybrid Graph Convolutional Recurrent Network
    Miaoru Zhang
    Hao Zhou
    Ke Yu
    Xiaofei Wu
    [J]. Wireless Personal Communications, 2024, 138 (3) : 1867 - 1892
  • [6] Cellular Network Traffic Prediction with Hybrid Graph Convolutional Recurrent Network
    Zhang, Miaoru
    Zhou, Hao
    Yu, Ke
    Wu, Xiaofei
    [J]. Wireless Personal Communications, 138 (03): : 1867 - 1892
  • [7] Adaptive Graph Convolutional Recurrent Network with Transformer and Whale Optimization Algorithm for Traffic Flow Prediction
    Zhang, Chen
    Wu, Yue
    Shen, Ya
    Wang, Shengzhao
    Zhu, Xuhui
    Shen, Wei
    [J]. MATHEMATICS, 2024, 12 (10)
  • [8] Extended Multi-Component Gated Recurrent Graph Convolutional Network for Traffic Flow Prediction
    Zhao, Junhui
    Xiong, Xincheng
    Zhang, Qingmiao
    Wang, Dongming
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (05) : 4634 - 4644
  • [9] Dual flow fusion graph convolutional network for traffic flow prediction
    Zhao, Yuan
    Li, Mingxin
    Wen, Haoyang
    Zhao, Hui
    Wang, Yongjian
    Wen, Shixi
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (08) : 3425 - 3437
  • [10] A Graph Convolutional Method for Traffic Flow Prediction in Highway Network
    Zhang, Tianpu
    Ding, Weilong
    Chen, Tao
    Wang, Zhe
    Chen, Jun
    [J]. WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021