The Characteristic Polynomial of Sums of Random Permutations and Regular Digraphs

被引:1
|
作者
Coste, Simon [1 ]
Lambert, Gaultier [2 ]
Zhu, Yizhe [3 ]
机构
[1] ENS PSL Univ, Dept Informat, 45 Rue Ulm, F-75230 Paris 05, France
[2] Univ Zurich, Inst Math, 190 Winterthurerstr, CH-8057 Zurich, Switzerland
[3] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
CIRCULAR LAW; SPECTRAL GAP; MATRICES; EIGENVALUES;
D O I
10.1093/imrn/rnad182
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A(n) be the sum of d permutation matrices of size n x n, each drawn uniformly at random and independently. We prove that the normalized characteristic polynomial 1/root d det(I-n - zA(n)/root d) converges when n -> infinity towards a random analytic function on the unit disk. As an application, we obtain an elementary proof of the spectral gap of random regular digraphs. Our results are valid both in the regime where d is fixed and for d slowly growing with n.
引用
收藏
页码:2461 / 2510
页数:50
相关论文
共 50 条
  • [1] Random Permutations of a Regular Lattice
    Betz, Volker
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2014, 155 (06) : 1222 - 1248
  • [2] Random Permutations of a Regular Lattice
    Volker Betz
    [J]. Journal of Statistical Physics, 2014, 155 : 1222 - 1248
  • [3] Discrepancy Properties for Random Regular Digraphs
    Cook, Nicholas A.
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2017, 50 (01) : 23 - 58
  • [4] The Circular Law for random regular digraphs
    Cook, Nicholas A.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (04): : 2111 - 2167
  • [5] MATCHINGS IN RANDOM REGULAR BIPARTITE DIGRAPHS
    WALKUP, DW
    [J]. DISCRETE MATHEMATICS, 1980, 31 (01) : 59 - 64
  • [6] STRUCTURE OF EIGENVECTORS OF RANDOM REGULAR DIGRAPHS
    Litvak, Alexander E.
    Lytova, Anna
    Tikhomirov, Konstantin
    Tomczak-Jaegermann, Nicole
    Youssef, Pierre
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (11) : 8097 - 8172
  • [7] A characteristic polynomial for rooted graphs and rooted digraphs
    Gordon, G
    McMahon, E
    [J]. DISCRETE MATHEMATICS, 2001, 232 (1-3) : 19 - 33
  • [8] On the characteristic polynomial of n-Cayley digraphs
    Arezoomand, Majid
    Taeri, Bijan
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (03):
  • [9] On the coefficients of skew Laplacian characteristic polynomial of digraphs
    Ganie, Hilal A.
    Ingole, Archana
    Deshmukh, Ujwala
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (05)
  • [10] On sums of products of Bernoulli variables and random permutations
    Joffe, A
    Marchand, É
    Perron, F
    Popadiuk, P
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2004, 17 (01) : 285 - 292