Specht property of varieties of graded Lie algebras

被引:2
|
作者
Correa, Daniela Martinez [1 ]
Koshlukov, Plamen [1 ]
机构
[1] Univ Estadual Campinas, Dept Math, 651 Sergio Buarque de Holanda, BR-13083859 Campinas, SP, Brazil
来源
MONATSHEFTE FUR MATHEMATIK | 2023年 / 202卷 / 01期
基金
巴西圣保罗研究基金会;
关键词
Upper triangular matrices; Graded polynomial identities; Finite basis of identities; Specht problem; Graded Lie algebras; POLYNOMIAL-IDENTITIES; JORDAN ALGEBRA; MATRICES; FIELD;
D O I
10.1007/s00605-023-01840-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let UTn( F) be the algebra of the nxn upper triangular matrices and denote UTn(F)((-)) the Lie algebra on the vector space of UTn(F) with respect to the usual bracket (commutator), over an infinite field F. In this paper, we give a positive answer to the Specht property for the ideal of the Z(n)-graded identities of UTn(F)((-)) with the canonical grading when the characteristic p of F is 0 or is larger than n- 1. Namely we prove that every ideal of graded identities in the free graded Lie algebra that contains the graded identities of UTn(F)((-)), is finitely based. Moreover we show that if F is an infinite field of characteristic p = 2 then the Z(3)-graded identities of UT3(-)(F) do not satisfy the Specht property. More precisely, we construct explicitly an ideal of graded identities containing that of UT3(-)(F), and which is not finitely generated as an ideal of graded identities.
引用
收藏
页码:65 / 92
页数:28
相关论文
共 50 条
  • [1] Specht property of varieties of graded Lie algebras
    Daniela Martinez Correa
    Plamen Koshlukov
    Monatshefte für Mathematik, 2023, 202 (1) : 65 - 92
  • [2] On varieties parametrizing graded complex Lie algebras
    T. Foth
    M. Tvalavadze
    Geometriae Dedicata, 2009, 140 : 137 - 144
  • [3] On varieties parametrizing graded complex Lie algebras
    Foth, T.
    Tvalavadze, M.
    GEOMETRIAE DEDICATA, 2009, 140 (01) : 137 - 144
  • [4] Specht property for some varieties of Jordan algebras of almost polynomial growth
    Centrone, Lucio
    Martino, Fabrizio
    Souza, Manuela da Silva
    JOURNAL OF ALGEBRA, 2019, 521 : 137 - 165
  • [5] Graded polynomial identities and Specht property of the Lie algebra sl2
    Giambruno, Antonio
    Souza, Manuela da Silva
    JOURNAL OF ALGEBRA, 2013, 389 : 6 - 22
  • [6] ON LIE-ALGEBRAS VARIETIES AND RESTRICTED LIE-ALGEBRAS VARIETIES
    STEPANOV, AY
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1993, (05): : 21 - 24
  • [7] A Lie algebra over a finite field of characteristic 2: Graded polynomial identities and Specht property
    Morais, Pedro
    Salomao, Mateus Eduardo
    Souza, Manuela da Silva
    JOURNAL OF ALGEBRA, 2024, 639 : 228 - 248
  • [8] Noetherianity and Specht problem for varieties of bicommutative algebras
    Drensky, Vesselin
    Zhakhayev, Bekzat K.
    JOURNAL OF ALGEBRA, 2018, 499 : 570 - 582
  • [9] VARIETIES OF LIE ALGEBRAS
    VAUGHANL.MR
    QUARTERLY JOURNAL OF MATHEMATICS, 1970, 21 (83): : 297 - &
  • [10] Algebras of quotients of graded Lie algebras
    Sanchez Ortega, Juana
    Siles Molina, Mercedes
    JOURNAL OF ALGEBRA, 2010, 323 (07) : 2002 - 2015