Arbitrary l-state solutions of the Klein-Gordon equation with the Eckart plus a class of Yukawa potential and its non-relativistic thermal properties

被引:0
|
作者
Demirci, Mehmet [1 ]
Sever, Ramazan [2 ]
机构
[1] Karadeniz Tech Univ, Dept Phys, TR-61080 Trabzon, Turkiye
[2] Middle East Tech Univ, Dept Phys, TR-06800 Ankara, Turkiye
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2023年 / 138卷 / 05期
关键词
PEKERIS-TYPE APPROXIMATION; SHIFTED 1/N EXPANSION; DIRAC-EQUATION; THERMODYNAMIC PROPERTIES; SCHRODINGER-EQUATION; PARTITION-FUNCTION; HULTHEN; EXPRESSION; VECTOR; FORM;
D O I
10.1140/epjp/s13360-023-04030-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report bound-state solutions of the Klein-Gordon equation with a novel combined potential, the Eckart plus a class of Yukawa potential, by means of the parametric Nikiforov-Uvarov method. To deal the centrifugal and the coulombic behavior terms, we apply the Greene-Aldrich approximation scheme. We present any l-state energy eigenvalues and the corresponding normalized wave functions of a mentioned system in a closed form. We discuss various special cases related to our considered potential which are utility for other physical systems and show that these are consistent with previous reports in literature. Moreover, we calculate the non-relativistic thermodynamic quantities (partition function, mean energy, free energy, specific heat and entropy) for the potential model in question, and investigate them for a few diatomic molecules. We find that the energy eigenvalues are sensitive with regard to the quantum numbers n(r) and l as well as the parameter delta. Our results show that energy eigenvalues are more bounded at either smaller quantum number l or smaller parameter delta.
引用
收藏
页数:17
相关论文
共 34 条
  • [1] Arbitrary l-state solutions of the Klein-Gordon equation with the Manning-Rosen plus a Class of Yukawa potentials
    Ahmadov, A., I
    Demirci, M.
    Aslanova, S. M.
    Mustamin, M. F.
    PHYSICS LETTERS A, 2020, 384 (12)
  • [2] Arbitrary l-state solutions of the Klein-Gordon equation with the Poschl-Teller potential
    Kocak, G.
    Taskin, F.
    ANNALEN DER PHYSIK, 2010, 522 (11) : 802 - 806
  • [3] Relativistic and non-relativistic thermal properties with bound and scattering states of the Klein-Gordon equation for Mobius square plus generalized Yukawa potentials
    Ikot, A. N.
    Okorie, U. S.
    Okon, I. B.
    Ahmadov, A. I.
    Edet, C. O.
    Oladimeji, Enock
    Duque, C. A.
    Rampho, G. J.
    INDIAN JOURNAL OF PHYSICS, 2023, 97 (10) : 2871 - 2888
  • [4] Relativistic and non-relativistic thermal properties with bound and scattering states of the Klein-Gordon equation for Mobius square plus generalized Yukawa potentials
    A. N. Ikot
    U. S. Okorie
    I. B. Okon
    A. I. Ahmadov
    C. O. Edet
    Enock Oladimeji
    C. A. Duque
    G. J. Rampho
    Indian Journal of Physics, 2023, 97 : 2871 - 2888
  • [5] Any l-state solutions of the Klein-Gordon equation with the generalized Hulthen potential
    Qiang, Wen-Chao
    Zhou, Run-Suo
    Gao, Yang
    PHYSICS LETTERS A, 2007, 371 (03) : 201 - 204
  • [6] Comment on: "Any l-state solutions of the Klein-Gordon equation with the generalized Hulthen potential"
    Benamira, F.
    Guechi, L.
    Zouache, A.
    PHYSICS LETTERS A, 2008, 372 (48) : 7199 - 7200
  • [7] ANY l-STATE ANALYTICAL SOLUTIONS OF THE KLEIN-GORDON EQUATION FOR THE WOODS-SAXON POTENTIAL
    Badalov, V. H.
    Ahmadov, H. I.
    Badalov, S. V.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2010, 19 (07) : 1463 - 1475
  • [8] D-dimensional Klein-Gordon equation in presence of deformed generalized Deng-Fan with Yukawa potential class: Approximate bound state solutions in relativistic and non-relativistic regimes
    Dutta, Sukanya
    Dey, Arijit
    Das, Amiya
    ANNALS OF PHYSICS, 2024, 468
  • [9] Klein-Gordon equation and thermodynamic properties with the Hua plus modified Eckart potential (HPMEP)
    Onyenegecha, C. P.
    Oguzie, E. E.
    Njoku, I. J.
    Omame, A.
    Okereke, C. J.
    Ukewuihe, U. M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (11):
  • [10] Bound state solutions of the Klein-Gordon equation under a non-central potential: the Eckart plus a ring-shaped potential
    Ahmadov, A. I.
    Demirci, M.
    Mustamin, M. F.
    Orujova, M. Sh.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (01):