N=4 SYM, (super)-polynomial rings and emergent quantum mechanical symmetries

被引:0
|
作者
Koch, Robert de Mello [1 ,3 ,4 ]
Ramgoolam, Sanjaye [2 ,3 ,4 ]
机构
[1] Huzhou Univ, Sch Sci, Huzhou 313000, Peoples R China
[2] Queen Mary Univ London, Ctr Theoret Phys, Sch Phys & Chem Sci, London E1 4NS, England
[3] Univ Witwatersrand, Sch Phys, ZA-2050 Johannesburg, South Africa
[4] Univ Witwatersrand, Mandelstam Inst Theoret Phys, ZA-2050 Johannesburg, South Africa
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2023年 / 02期
基金
新加坡国家研究基金会;
关键词
AdS-CFT Correspondence; Supersymmetric Gauge Theory; Differential and Algebraic Geometry; Global Symmetries; FIELD; SUPERMULTIPLETS; CORRELATORS; CHARACTERS;
D O I
10.1007/JHEP02(2023)176
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The structure of half-BPS representations of psu(2, 2|4) leads to the definition of a super-polynomial ring 1Z(8|8) which admits a realisation of psu(2, 2|4) in terms of differential operators on the super-ring. The character of the half-BPS fundamental field representation encodes the resolution of the representation in terms of an exact sequence of modules of 1Z(8|8). The half-BPS representation is realized by quotienting the super ring by a quadratic ideal, equivalently by setting to zero certain quadratic polynomials in the generators of the super-ring. This description of the half-BPS fundamental field irreducible representation of psu(2, 2|4) in terms of a super-polynomial ring is an example of a more general construction of lowest-weight representations of Lie (super-) algebras using polynomial rings generated by a commuting subspace of the standard raising operators, corresponding to positive roots of the Lie (super-) algebra. We illustrate the construction using simple examples of representations of su(3) and su(4). These results lead to the definition of a notion of quantum mechanical emergence for oscillator realisations of symmetries, which is based on ideals in the ring of polynomials in the creation operators.
引用
收藏
页数:51
相关论文
共 50 条
  • [2] Emergent supersymmetry in the marginal deformations of N=4 SYM
    Jin, Qingjun
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (10):
  • [3] N=4 supersymmetric quantum mechanical model: Novel symmetries
    Krishna, S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2017, 32 (11):
  • [4] The N=4 SYM integrable super spin chain
    Beisert, N
    Staudacher, M
    NUCLEAR PHYSICS B, 2003, 670 (03) : 439 - 463
  • [5] Non-invertible symmetries of N=4 SYM and twisted compactification
    Kaidi, Justin
    Zafrir, Gabi
    Zheng, Yunqin
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, (08):
  • [6] Symmetries and analytic properties of scattering amplitudes in N=4 SYM theory
    Korchemsky, G. P.
    Sokatchev, E.
    NUCLEAR PHYSICS B, 2010, 832 (1-2) : 1 - 51
  • [7] A super MHV vertex expansion for N=4 SYM theory
    Kiermaier, Michael
    Naculich, Stephen G.
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (05):
  • [8] Quantum phases of 4d SU(N) N=4 SYM
    Cabo-Bizet, Alejandro
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, (10):
  • [9] Yangian symmetries of matrix models and spin chains:: The dilatation operator of N=4 SYM
    Agarwal, A
    Rajeev, SG
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2005, 20 (23): : 5453 - 5490
  • [10] Flavored N=4 SYM - a highly entangled quantum liquid
    Chang, Han-Chih
    Karch, Andreas
    Uhlemann, Christoph F.
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (09):