Optimal Trained Deep Learning Model for Breast Cancer Segmentation and Classification

被引:4
|
作者
Krishnakumar, B. [1 ]
Kousalya, K. [1 ]
机构
[1] Kongu Engn Coll, Dept Comp Sci & Engn, Perundurai 638060, India
来源
INFORMATION TECHNOLOGY AND CONTROL | 2023年 / 52卷 / 04期
关键词
Deep Learning; Healthcare; Breast Cancer; classification; segmentation; ALGORITHM;
D O I
10.5755/j01.itc.52.4.34232
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Breast cancer is the most widespread cancer among women. Based on the International cancer research center analysis, the highest number of deaths among women is due to breast cancer. Hence, detecting breast cancer at the earliest may help the oncologist to make appropriate decisions. Due to variations in breast tissue density, there is still a challenge in precise diagnosis and classification. To overcome this challenge, a novel optimal trained deep learning model (OTDEM)-based breast cancer segmentation and classification are proposed with the following four stages: they are, preprocessing, segmentation, feature extraction, and classification. The input image is passed to the initial stage using the Contrast Limited Adaptive Histogram Equalization (CLA-HE) filter to enhance the image. Then the preprocessed image is given to the segmentation stage for the image sub-segments by correlation-based deep joint segmentation. Following that, the features such as statistical features, improved local gradient texture pattern (LGXP), texton features, and shape-based features are derived from the segmented image. Then the derived features are fed to the ensemble model that includes a convolutional neural network (CNN), deep belief network (DBN), and bidirectional graph recurrent unit (Bi-GRU) classifier to finalize the classification outcome. Further, to enhance the performance of the ensemble model, the weight of BI-GRU is optimized via a new algorithm termed Swarm Intelligence - Pelican Optimization Algorithm (SIPOA). This ensures optimal training to make the model more appropriate in its classification process. Finally, the performance of the proposed work is validated over the traditional models concerning different performance measures.
引用
下载
收藏
页码:915 / 934
页数:20
相关论文
共 50 条
  • [1] Optimal Deep Transfer Learning Model for Histopathological Breast Cancer Classification
    Ragab, Mahmoud
    Nahhas, Alaa F.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 2849 - 2864
  • [2] Comparison of the output of a deep learning segmentation model for locoregional breast cancer radiotherapy trained on 2 different datasets
    Bakx, Nienke
    van der Sangen, Maurice
    Theuws, Jacqueline
    Bluemink, Hanneke
    Hurkmans, Coen
    TECHNICAL INNOVATIONS & PATIENT SUPPORT IN RADIATION ONCOLOGY, 2023, 26
  • [3] Segmentation and classification of breast cancer using novel deep learning architecture
    Ramesh, S.
    Sasikala, S.
    Gomathi, S.
    Geetha, V
    Anbumani, V
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (19): : 16533 - 16545
  • [4] Segmentation and classification of breast cancer using novel deep learning architecture
    S. Ramesh
    S. Sasikala
    S. Gomathi
    V. Geetha
    V. Anbumani
    Neural Computing and Applications, 2022, 34 : 16533 - 16545
  • [5] BREAST CANCER NUCLEI SEGMENTATION AND CLASSIFICATION BASED ON A DEEP LEARNING APPROACH
    Kowal, Marek
    Skobel, Marcin
    Gramacki, Artur
    Korbicz, Jozef
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2021, 31 (01) : 85 - 106
  • [6] Deep Vision for Breast Cancer Classification and Segmentation
    Fulton, Lawrence
    McLeod, Alex
    Dolezel, Diane
    Bastian, Nathaniel
    Fulton, Christopher P.
    CANCERS, 2021, 13 (21)
  • [7] A Comprehensive Review on Breast Cancer Detection, Classification and Segmentation Using Deep Learning
    Barsha Abhisheka
    Saroj Kumar Biswas
    Biswajit Purkayastha
    Archives of Computational Methods in Engineering, 2023, 30 : 5023 - 5052
  • [8] Improved Watershed Segmentation and DualNet Deep Learning Classifiers for Breast Cancer Classification
    Kadadevarmath J.
    Reddy A.P.
    SN Computer Science, 5 (5)
  • [9] Lightweight Deep Learning Pipeline for Detection, Segmentation and Classification of Breast Cancer Anomalies
    Oliveira, Hugo S.
    Teixeira, Joao F.
    Oliveira, Helder P.
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT II, 2019, 11752 : 707 - 715
  • [10] A Comprehensive Review on Breast Cancer Detection, Classification and Segmentation Using Deep Learning
    Abhisheka, Barsha
    Biswas, Saroj Kumar
    Purkayastha, Biswajit
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (08) : 5023 - 5052