Continual Detection Transformer for Incremental Object Detection

被引:14
|
作者
Liu, Yaoyao [1 ]
Schiele, Bernt [1 ]
Vedaldi, Andrea [2 ]
Rupprecht, Christian [2 ]
机构
[1] Max Planck Inst Informat, Saarland Informat Campus, Saarbrucken, Germany
[2] Univ Oxford, Dept Engn Sci, Visual Geometry Grp, Oxford, England
关键词
D O I
10.1109/CVPR52729.2023.02279
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Incremental object detection (IOD) aims to train an object detector in phases, each with annotations for new object categories. As other incremental settings, IOD is subject to catastrophic forgetting, which is often addressed by techniques such as knowledge distillation (KD) and exemplar replay (ER). However, KD and ER do not work well if applied directly to state-of-the-art transformer-based object detectors such as Deformable DETR [59] and UP-DETR [9]. In this paper, we solve these issues by proposing a ContinuaL DEtection TRansformer (CL-DETR), a new method for transformer-based IOD which enables effective usage of KD and ER in this context. First, we introduce a Detector Knowledge Distillation (DKD) loss, focusing on the most informative and reliable predictions from old versions of the model, ignoring redundant background predictions, and ensuring compatibility with the available ground-truth labels. We also improve ER by proposing a calibration strategy to preserve the label distribution of the training set, therefore better matching training and testing statistics. We conduct extensive experiments on COCO 2017 and demonstrate that CL-DETR achieves state-of-the-art results in the IOD setting.
引用
收藏
页码:23799 / 23808
页数:10
相关论文
共 50 条
  • [1] Class-incremental object detection
    Dong, Na
    Zhang, Yongqiang
    Ding, Mingli
    Bai, Yancheng
    [J]. PATTERN RECOGNITION, 2023, 139
  • [2] DIODE: Dilatable Incremental Object Detection
    Peng, Can
    Zhao, Kun
    Maksoud, Sam
    Wang, Tianren
    Lovell, Brian C.
    [J]. PATTERN RECOGNITION, 2023, 136
  • [3] Pseudo Object Replay and Mining for Incremental Object Detection
    Yang, Dongbao
    Zhou, Yu
    Hong, Xiaopeng
    Zhang, Aoting
    Wei, Xin
    Zeng, Linchengxi
    Qiao, Zhi
    Wang, Weiping
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 153 - 162
  • [4] incDFM: Incremental Deep Feature Modeling for Continual Novelty Detection
    Rios, Amanda
    Ahuja, Nilesh
    Ndiour, Ibrahima
    Genc, Utku
    Itti, Laurent
    Tickoo, Omesh
    [J]. COMPUTER VISION, ECCV 2022, PT XXV, 2022, 13685 : 588 - 604
  • [5] Continual Object Detection: A review of definitions, strategies, and challenges
    Menezes, Angelo G.
    de Moura, Gustavo
    Alves, Cezanne
    de Carvalho, Andre C. P. L. F.
    [J]. NEURAL NETWORKS, 2023, 161 : 476 - 493
  • [6] Wanderlust: Online Continual Object Detection in the Real World
    Wang, Jianren
    Wang, Xin
    Yue Shang-Guan
    Gupta, Abhinav
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 10809 - 10818
  • [7] Video Transformer for Deepfake Detection with Incremental Learning
    Khan, Sohail Ahmed
    Dai, Hang
    [J]. PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 1821 - 1828
  • [8] Incremental convolutional transformer for baggage threat detection
    Hassan, Taimur
    Hassan, Bilal
    Owais, Muhammad
    Velayudhan, Divya
    Dias, Jorge
    Ghazal, Mohammed
    Werghi, Naoufel
    [J]. PATTERN RECOGNITION, 2024, 153
  • [9] DETECTION TRANSFORMER WITH DIVERSIFIED OBJECT QUERIES
    Senthivel, Tharsan
    Ngoc-Son Vu
    Borzic, Boris
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2515 - 2519
  • [10] Richer Information Transformer for Object Detection
    Yao, Shunyu
    Qi, Ke
    Chen, Wenbin
    Zhou, Yicong
    [J]. 2022 5TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND NATURAL LANGUAGE PROCESSING, MLNLP 2022, 2022, : 110 - 114