Simple and Effective Fault Diagnosis Method of Power Lithium-Ion Battery Based on GWA-DBN

被引:2
|
作者
Pan, Bin [1 ]
Gao, Wen [2 ]
Peng, Yuhang [1 ]
Hu, Zhili [1 ]
Wang, Lujun [1 ]
Jiang, Jiuchun [1 ]
机构
[1] Hubei Univ Technol, Hubei Key Lab High efficiency Utilizat Solar Energ, Wuhan 430068, Hubei, Peoples R China
[2] Sanxia Univ, Yichang 443002, Hubei, Peoples R China
关键词
batteries; electrochemical storage; novel numerical and analytical simulations; ALGORITHM;
D O I
10.1115/1.4055801
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In order to improve the accuracy of battery pack inconsistency fault detection, an optimal deep belief network (DBN) single battery inconsistency fault detection model based on the gray wolf algorithm (GWA) was proposed. The performance of the DBN model is affected by the weights and bias parameters, and the gray wolf algorithm has a good ability to seek optimization, so the gray wolf algorithm is used to optimize the connection weights of the DBN model. Therefore, the accuracy rate of battery inconsistency diagnosis is improved. The battery voltage characteristic data is used as the input signal of the DBN model. The health and faults of the single cells are used as the output signals of the DBN model. The battery inconsistency fault detection model of GWA-DBN is established. Through the comparison and simulation with other algorithms, it is proved that the designed model has higher diagnostic accuracy, better fitting effect, and good application prospect.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Fault Diagnosis Method for Lithium-Ion Power Battery Incorporating Multidimensional Fault Features
    Zhang, Fan
    Zheng, Xiao
    Xing, Zixuan
    Wu, Minghu
    ENERGIES, 2024, 17 (07)
  • [2] Lithium-ion battery fault diagnosis method based on KPCA-MTCN
    Tan, Qipeng
    Li, Yongqi
    Chen, Man
    Zhang, Lingxian
    Peng, Peng
    Wan, Minhui
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (12): : 2297 - 2306
  • [3] Fault Diagnosis Method of Lithium-Ion Battery Leakage Based on Electrochemical Impedance Spectroscopy
    Zhang, Yanru
    Zhang, Pengfei
    Hu, Jing
    Zhang, Caiping
    Zhang, Linjing
    Wang, Yubin
    Zhang, Weige
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2024, 60 (01) : 1879 - 1889
  • [4] A Quantitative Fault Diagnosis Method for Lithium-Ion Battery Based on MD-LSTM
    Li, Jinglun
    Mao, Ziheng
    Gu, Xin
    Tao, Xuewen
    Shang, Yunlong
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (01): : 2266 - 2276
  • [5] Fault diagnosis of lithium-ion battery sensors based on multi-method fusion
    Yan, Yuan
    Luo, Wei
    Wang, Zhifu
    Xu, Song
    Yang, Zhongyi
    Zhang, Shunshun
    Hao, Wenmei
    Lu, Yanxi
    JOURNAL OF ENERGY STORAGE, 2024, 85
  • [6] A LabVIEW-based fault diagnosis system for lithium-ion battery
    Tang Zining
    Fang Yunzhou
    Peng Qingfeng
    2011 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2011,
  • [7] Support Vector Machine Based Lithium-ion Battery Electrolyte Leakage Fault Diagnosis Method
    Zhang, Caiping
    Zhang, Pengfei
    Wang, Yubin
    Zhang, Linjing
    Hu, Jing
    Zhang, Weige
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1880 - 1886
  • [8] A novel fault diagnosis method for lithium-Ion battery packs of electric vehicles
    Li, Xiaoyu
    Wang, Zhenpo
    MEASUREMENT, 2018, 116 : 402 - 411
  • [9] Coupled electrothermal model and thermal fault diagnosis method for lithium-ion battery
    Wang, Qiuting
    Qi, Wei
    INTERNATIONAL JOURNAL OF VEHICLE DESIGN, 2024, 94 (1-2) : 83 - 99
  • [10] A Sensor Fault Diagnosis Method for a Lithium-Ion Battery Pack in Electric Vehicles
    Xiong, Rui
    Yu, Quanqing
    Shen, Weixiang
    Lin, Cheng
    Sun, Fengchun
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2019, 34 (10) : 9709 - 9718