The principal eigenvalue for partially degenerate and periodic reaction-diffusion systems with time delay

被引:5
|
作者
Huang, Mingdi [1 ,2 ]
Wu, Shi-Liang [1 ]
Zhao, Xiao-Qiang [2 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Shaanxi, Peoples R China
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Principal eigenvalue; Basic reproduction ratio; Partially degenerate systems; Time periodicity and delay; Global dynamics AMS subjective; NONLOCAL DISPERSAL; REPRODUCTION NUMBER; GLOBAL DYNAMICS; LYME-DISEASE; MODEL; TRANSMISSION; THRESHOLD; EQUATIONS; SPREAD;
D O I
10.1016/j.jde.2023.06.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first establish the theory of principal eigenvalues for a large class of partially degenerate, linear and periodic parabolic cooperative systems with time delay. Then we apply these theoretical results to study the global dynamics of a blacklegged tick Ixodes scapularis population model. To present a thresholdtype result in terms of basic reproduction ratio R0 for such a model, we also extend the earlier theory of R0 to abstract functional differential equations with time-delayed internal transition.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:396 / 449
页数:54
相关论文
共 50 条