Proteomics and lipidomics in atherosclerotic cardiovascular disease risk prediction

被引:35
|
作者
Nurmohamed, Nick S. [1 ,2 ]
Kraaijenhof, Jordan M. [1 ]
Mayr, Manuel [3 ,4 ]
Nicholls, Stephen J. [5 ]
Koenig, Wolfgang [6 ,7 ,8 ]
Catapano, Alberico L. [9 ,10 ]
Stroes, Erik S. G. [1 ]
机构
[1] Univ Amsterdam, Amsterdam Univ Med Ctr, Dept Vasc Med, Meibergdreef 9, NL-1105 AZ Amsterdam, Netherlands
[2] Vrije Univ Amsterdam, Amsterdam Univ Med Ctr, Dept Cardiol, De Boelelaan 1117, NL-1081 HV Amsterdam, Netherlands
[3] Kings Coll London, Sch Cardiovasc & Metab Med & Sci, Strand, London WC2R 2LS, England
[4] Med Univ Vienna, Dept Internal Med 2, Div Cardiol, Wahringer Gurtel,18 20, A-1090 Vienna, Austria
[5] Monash Univ, Victorian Heart Inst, 631 Blackburn Rd, Clayton, Vic 3168, Australia
[6] Tech Univ Munich, Deutsch Herzzentrum Munchen, Lazarett str 36, D-80636 Munich, Germany
[7] German Ctr Cardiovasc Res DZHK eV, Partner site Munich Heart Alliance, Pettenkofer str 8a & 9, D-80336 Munich, Germany
[8] Univ Ulm, Inst Epidemiol & Med Biometry, Helmholtz str 22, D-89081 Ulm, Germany
[9] Univ Milan, Dept Pharmacol & Biomol Sci, Via Balzaretti 9, I-20133 Milan, Italy
[10] IRCCS Multimed, Via Milanese,300, I-20099 Sesto San Giovanni, MI, Italy
关键词
Proteomics; Lipidomics; Multiomics; ASCVD; Risk score; CORONARY-ARTERY-DISEASE; HUMAN PLASMA LIPIDOME; BEMPEDOIC ACID; PREDIMED TRIAL; EVENTS; LDL; CERAMIDES; CHOLESTEROL; ANGIOGRAPHY; STABILITY;
D O I
10.1093/eurheartj/ehad161
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Given the limited accuracy of clinically used risk scores such as the Systematic COronary Risk Evaluation 2 system and the Second Manifestations of ARTerial disease 2 risk scores, novel risk algorithms determining an individual's susceptibility of future incident or recurrent atherosclerotic cardiovascular disease (ASCVD) risk are urgently needed. Due to major improvements in assay techniques, multimarker proteomic and lipidomic panels hold the promise to be reliably assessed in a high-throughput routine. Novel machine learning-based approaches have facilitated the use of this high-dimensional data resulting from these analyses for ASCVD risk prediction. More than a dozen of large-scale retrospective studies using different sets of biomarkers and different statistical methods have consistently demonstrated the additive prognostic value of these panels over traditionally used clinical risk scores. Prospective studies are needed to determine the clinical utility of a biomarker panel in clinical ASCVD risk stratification. When combined with the genetic predisposition captured with polygenic risk scores and the actual ASCVD phenotype observed with coronary artery imaging, proteomics and lipidomics can advance understanding of the complex multifactorial causes underlying an individual's ASCVD risk.
引用
收藏
页码:1594 / 1607
页数:14
相关论文
共 50 条
  • [1] A Risk Prediction Model of Atherosclerotic Cardiovascular Disease in Japan
    Saito, Isao
    [J]. JOURNAL OF ATHEROSCLEROSIS AND THROMBOSIS, 2022, 29 (03) : 320 - 321
  • [2] Reducing reductionism: addressing risk for atherosclerotic cardiovascular disease by apolipoprotein proteomics
    Schmidt, Lukas E.
    Speidl, Walter S.
    Tsimikas, Sotirios
    Mayr, Manuel
    [J]. EUROPEAN HEART JOURNAL, 2023, 44 (27) : 2420 - 2422
  • [3] Proteomics for the prediction and prevention of atherosclerotic disease
    Ridker, Pal M.
    [J]. EUROPEAN HEART JOURNAL, 2022, 43 (16) : 1578 - 1581
  • [4] The relationship between the atherosclerotic cardiovascular disease risk score used in the prediction of cardiovascular disease risk and endocan
    Cakirca, M.
    Dae, S. A.
    Zorlu, M.
    Kiskac, M.
    Tunc, M.
    Karatoprak, C.
    [J]. NIGERIAN JOURNAL OF CLINICAL PRACTICE, 2019, 22 (05) : 713 - 717
  • [5] Risk Prediction for Atherosclerotic Cardiovascular Disease With and Without Race Stratification
    Ghosh, Arnab K.
    Venkatraman, Sara
    Nanna, Michael G.
    Safford, Monika M.
    Colantonio, Lisandro D.
    Brown, Todd M.
    Pinheiro, Laura C.
    Peterson, Eric D.
    Navar, Ann Marie
    Sterling, Madeline R.
    Soroka, Orysya
    Nahid, Musarrat
    Banerjee, Samprit
    Goyal, Parag
    [J]. JAMA CARDIOLOGY, 2024, 9 (01) : 55 - 62
  • [6] Universal Risk Prediction for Individuals With and Without Atherosclerotic Cardiovascular Disease
    Mok, Yejin
    Dardari, Zeina
    Sang, Yingying
    Hu, Xiao
    Bancks, Michael P.
    Mathews, Lena
    Hoogeveen, Ron C.
    Koton, Silvia
    Blaha, Michael J.
    Post, Wendy S.
    Ballantyne, Christie M.
    Coresh, Josef
    Rosamond, Wayne
    Matsushita, Kunihiro
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (05) : 562 - 573
  • [7] Lipidomics: Potential role in risk prediction and therapeutic monitoring for diabetes and cardiovascular disease
    Meikle, Peter J.
    Wong, Gerard
    Barlow, Christopher K.
    Kingwell, Bronwyn A.
    [J]. PHARMACOLOGY & THERAPEUTICS, 2014, 143 (01) : 12 - 23
  • [8] Atherosclerotic cardiovascular disease risk prediction: current state-of-the-art
    Rout, Amit
    Duhan, Sanchit
    Umer, Muhammad
    Li, Miranda
    Kalra, Dinesh
    [J]. HEART, 2024, 110 (15) : 1005 - 1014
  • [9] Enhancing cardiovascular risk prediction through proteomics?
    Singh, Bhawana
    Mayr, Manuel
    [J]. CARDIOVASCULAR RESEARCH, 2024, 120 (03) : e2 - e4
  • [10] Prediction of atherosclerotic cardiovascular risk in early childhood
    Ferraro, Simona
    Benedetti, Sara
    Mannarino, Savina
    Marcovina, Santica
    Biganzoli, Elia Mario
    Zuccotti, Gianvincenzo
    [J]. CLINICA CHIMICA ACTA, 2024, 552