Retrospective causal inference with multiple effect variables

被引:0
|
作者
Li, Wei [1 ,2 ]
Lu, Zitong [3 ]
Jia, Jinzhu [4 ,5 ]
Xie, Min [3 ]
Geng, Zhi [6 ]
机构
[1] Renmin Univ China, Ctr Appl Stat, 59 Zhongguancun St, Beijing 100872, Peoples R China
[2] Renmin Univ China, Sch Stat, 59 Zhongguancun St, Beijing 100872, Peoples R China
[3] City Univ Hong Kong, Dept Syst Engn, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
[4] Peking Univ, Sch Publ Hlth, 38 Xueyuan Rd, Beijing 100191, Peoples R China
[5] Peking Univ, Ctr Stat Sci, 38 Xueyuan Rd, Beijing 100191, Peoples R China
[6] Beijing Technol & Business Univ, Sch Math & Stat, Beijing 102488, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Causal attribution; Cause of effect; Medical diagnosis; Multivariate posterior causal effect; PROBABILITIES; IDENTIFICATION;
D O I
10.1093/biomet/asad056
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
As highlighted in and , deducing the causes of given effects is a more challenging problem than evaluating the effects of causes in causal inference. proposed an approach for deducing causes of a single effect variable based on posterior causal effects. In many applications, there are multiple effect variables, and they can be used simultaneously to more accurately deduce the causes. To retrospectively deduce causes from multiple effects, we propose multivariate posterior total, intervention and direct causal effects conditional on the observed evidence. We describe the assumptions of no confounding and monotonicity, under which we prove identifiability of the multivariate posterior causal effects and provide their identification equations. The proposed approach can be applied for causal attributions, medical diagnosis, blame and responsibility in various studies with multiple effect or outcome variables. Two examples are used to illustrate the proposed approach.
引用
收藏
页码:573 / 589
页数:17
相关论文
共 50 条
  • [1] CAUSAL INFERENCE IN RETROSPECTIVE STUDIES
    HOLLAND, PW
    RUBIN, DB
    [J]. EVALUATION REVIEW, 1988, 12 (03) : 203 - 231
  • [2] CAUSAL INFERENCE AND PROBLEM OF NONORTHOGONAL VARIABLES
    MORIARTY, BM
    [J]. GEOGRAPHICAL ANALYSIS, 1973, 5 (01) : 55 - 61
  • [3] Causal inference with imperfect instrumental variables
    Miklin, Nikolai
    Gachechiladze, Mariami
    Moreno, George
    Chaves, Rafael
    [J]. JOURNAL OF CAUSAL INFERENCE, 2022, 10 (01) : 45 - 63
  • [4] Mendelian randomisation and instrumental variables for causal inference
    Sheehan, NA
    Didelez, V
    [J]. GENETIC EPIDEMIOLOGY, 2005, 29 (03) : 277 - 277
  • [6] The Inflation Technique for Causal Inference with Latent Variables
    Wolfe, Elie
    Spekkens, Robert W.
    Fritz, Tobias
    [J]. JOURNAL OF CAUSAL INFERENCE, 2019, 7 (02)
  • [7] Multiple robustness estimation in causal inference
    Wang, Lei
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (23) : 5701 - 5718
  • [8] Uncertainty in causal inference: The case of retrospective revaluation
    Carroll, Christopher D.
    Cheng, Patricia W.
    Lu, Hongjing
    [J]. COGNITION IN FLUX, 2010, : 1076 - 1081
  • [9] A Bayesian Semiparametric Approach to Intermediate Variables in Causal Inference
    Schwartz, Scott L.
    Li, Fan
    Mealli, Fabrizia
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (496) : 1331 - 1344
  • [10] Causal graphical models with latent variables: Learning and inference
    Meganck, Stijn
    Leray, Philippe
    Manderick, Bernard
    [J]. SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2007, 4724 : 5 - +