Obstacle Avoidance Based on Deep Reinforcement Learning and Artificial Potential Field

被引:3
|
作者
Han, Haoran [1 ]
Xi, Zhilong [1 ]
Cheng, Jian [1 ]
Lv, Maolong [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu, Peoples R China
[2] Air Force Engn Univ, Air Traff Control & Nav Coll, Xian, Peoples R China
关键词
obstacle avoidance; deep reinforcement learning (DRL); artificial potential field (APF);
D O I
10.1109/ICCAR57134.2023.10151771
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Obstacle avoidance is an essential part of mobile robot path planning, since it ensures the safety of automatic control. This paper proposes an obstacle avoidance algorithm that combines artificial potential field with deep reinforcement learning (DRL). State regulation is presented so that the pre-defined velocity constraint could be satisfied. To guarantee the isotropy of the robot controller as well as reduce training complexity, coordinate transformation into normal direction and tangent direction is introduced, making it possible to use one-dimension controllers to work in a two-dimension task. Artificial potential field (APF) is modified such that the obstacle directly affects the intermediate target positions instead of the control commands, which can well be used to guide the previously trained one-dimension DRL controller. Experiment results show that the proposed algorithm successfully achieved obstacle avoidance tasks in single-agent and multi-agent scenarios.
引用
收藏
页码:215 / 220
页数:6
相关论文
共 50 条
  • [1] Active Collision Avoidance for Robotic Arm Based on Artificial Potential Field and Deep Reinforcement Learning
    Xu, Qiaoyu
    Zhang, Tianle
    Zhou, Kunpeng
    Lin, Yansong
    Ju, Wenhao
    APPLIED SCIENCES-BASEL, 2024, 14 (11):
  • [2] AUV Obstacle Avoidance Planning Based on Deep Reinforcement Learning
    Yuan, Jianya
    Wang, Hongjian
    Zhang, Honghan
    Lin, Changjian
    Yu, Dan
    Li, Chengfeng
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (11)
  • [3] Reducing Oscillations for Obstacle Avoidance in a Dense Environment Using Deep Reinforcement Learning and Time-Derivative of an Artificial Potential Field
    Xi, Zhilong
    Han, Haoran
    Cheng, Jian
    Lv, Maolong
    DRONES, 2024, 8 (03)
  • [4] Robot Obstacle Avoidance Controller Based on Deep Reinforcement Learning
    Tang, Yaokun
    Chen, Qingyu
    Wei, Yuxin
    JOURNAL OF SENSORS, 2022, 2022
  • [5] Autonomous obstacle avoidance of UAV based on deep reinforcement learning
    Yang, Songyue
    Yu, Guizhen
    Meng, Zhijun
    Wang, Zhangyu
    Li, Han
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (04) : 3323 - 3335
  • [6] Robot Obstacle Avoidance Controller Based on Deep Reinforcement Learning
    Tang, Yaokun
    Chen, Qingyu
    Wei, Yuxin
    Journal of Sensors, 2022, 2022
  • [7] Vision Based Drone Obstacle Avoidance by Deep Reinforcement Learning
    Xue, Zhihan
    Gonsalves, Tad
    AI, 2021, 2 (03) : 366 - 380
  • [8] A UAV Indoor Obstacle Avoidance System Based on Deep Reinforcement Learning
    Lo, Chun-Huang
    Lee, Chung-Nan
    2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 2137 - 2143
  • [9] Depth-based Obstacle Avoidance through Deep Reinforcement Learning
    Wu, Keyu
    Esfahani, Mahdi Abolfazli
    Yuan, Shenghai
    Wang, Han
    PROCEEDINGS OF 2019 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND ROBOTICS ENGINEERING (ICMRE 2019), 2019, : 102 - 106
  • [10] An obstacles avoidance method for serial manipulator based on reinforcement learning and Artificial Potential Field
    Haoxuan Li
    Daoxiong Gong
    Jianjun Yu
    International Journal of Intelligent Robotics and Applications, 2021, 5 : 186 - 202