Modular forms and an explicit Chebotarev variant of the Brun-Titchmarsh theorem

被引:0
|
作者
Hu, Daniel [1 ]
Iyer, Hari R. [2 ]
Shashkov, Alexander [3 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ USA
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[3] Williams Coll, Dept Math, Williamstown, MA USA
基金
美国国家科学基金会;
关键词
Primary: 11R44; Secondary: 11N36; 11F30; LEAST PRIME IDEAL; BOUNDS;
D O I
10.1007/s40993-023-00451-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an explicit Chebotarev variant of the Brun-Titchmarsh theorem. This leads to explicit versions of the best known unconditional upper bounds toward conjectures of Lang and Trotter for the coefficients of holomorphic cuspidal newforms. In particular, we prove thatlim x?oo #{1 < n < x | t(n) =? 0} x >1- 1.15x10-12, where t(n) is Ramanujan's tau-function. This is the first known positive unconditional lower bound for the proportion of positive integers n such that t(n) =? 0. Mathematics Subject Classification: Primary: 11R44, Secondary: 11N36, 11F30
引用
收藏
页数:37
相关论文
共 50 条