A Decomposable Causal View of Compositional Zero-Shot Learning

被引:4
|
作者
Yang, Muli [1 ]
Xu, Chenghao [1 ]
Wu, Aming [1 ]
Deng, Cheng [1 ]
机构
[1] Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Compositional zero-shot learning; vision and language; image recognition; causality;
D O I
10.1109/TMM.2022.3200578
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Composing and recognizing novel concepts that are combinations of known concepts, i.e., compositional generalization, is one of the greatest power of human intelligence. With the development of artificial intelligence, it becomes increasingly appealing to build a vision system that can generalize to unknown compositions based on restricted known knowledge, which has so far remained a great challenge to our community. In fact, machines can be easily misled by superficial correlations in the data, disregarding the causal patterns that are crucial to generalization. In this paper, we rethink compositional generalization with a causal perspective, upon the context of Compositional Zero-Shot Learning (CZSL). We develop a simple yet strong approach based on our novel Decomposable Causal view (dubbed "DECA"), by approximating the causal effect with the combination of three easy-to-learn components. Our proposed DECA(1) is evaluated on two challenging CZSL benchmarks by recognizing unknown compositions of known concepts. Despite being simple in the design, our approach achieves consistent improvements over state-of-the-art baselines, demonstrating its superiority towards the goal of compositional generalization.
引用
收藏
页码:5892 / 5902
页数:11
相关论文
共 50 条
  • [1] A causal view of compositional zero-shot recognition
    Atzmon, Yuval
    Kreuk, Felix
    Shalit, Uri
    Chechik, Gal
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [2] Zero-shot causal learning
    Nilforoshan, Hamed
    Moor, Michael
    Roohani, Yusuf
    Chen, Yining
    Surina, Anja
    Yasunaga, Michihiro
    Oblak, Sara
    Leskovec, Jure
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [3] Zero-Shot Compositional Concept Learning
    Xu, Guangyue
    Kordjamshidi, Parisa
    Chai, Joyce Y.
    1ST WORKSHOP ON META LEARNING AND ITS APPLICATIONS TO NATURAL LANGUAGE PROCESSING (METANLP 2021), 2021, : 19 - 27
  • [4] Open World Compositional Zero-Shot Learning
    Mancini, Massimiliano
    Naeem, Muhammad Ferjad
    Xian, Yongqin
    Akata, Zeynep
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 5218 - 5226
  • [5] Learning Attention Propagation for Compositional Zero-Shot Learning
    Khan, Muhammad Gul Zain Ali
    Naeem, Muhammad Ferjad
    Van Gool, Luc
    Pagani, A.
    Stricker, Didier
    Afzal, Muhammad Zeshan
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 3817 - 3826
  • [6] Learning the Compositional Domains for Generalized Zero-shot Learning
    Dong, Hanze
    Fu, Yanwei
    Hwang, Sung Ju
    Sigal, Leonid
    Xue, Xiangyang
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 221
  • [7] Learning Attention as Disentangler for Compositional Zero-shot Learning
    Hao, Shaozhe
    Han, Kai
    Wong, Kwan-Yee K.
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15315 - 15324
  • [8] Learning Graph Embeddings for Compositional Zero-shot Learning
    Naeem, Muhammad Ferjad
    Xian, Yongqin
    Tombari, Federico
    Akata, Zeynep
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 953 - 962
  • [9] Learning Conditional Attributes for Compositional Zero-Shot Learning
    Wang, Qingsheng
    Liu, Lingqiao
    Jing, Chenchen
    Chen, Hao
    Liang, Guoqiang
    Wang, Peng
    Shen, Chunhua
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 11197 - 11206
  • [10] Learning Invariant Visual Representations for Compositional Zero-Shot Learning
    Zhang, Tian
    Liang, Kongming
    Du, Ruoyi
    Sun, Xian
    Ma, Zhanyu
    Guo, Jun
    COMPUTER VISION, ECCV 2022, PT XXIV, 2022, 13684 : 339 - 355