Ensemble-GNN: federated ensemble learning with graph neural networks for disease module discovery and classification

被引:5
|
作者
Pfeifer, Bastian [1 ]
Chereda, Hryhorii [2 ]
Martin, Roman [3 ]
Saranti, Anna [1 ,4 ]
Clemens, Sandra [3 ]
Hauschild, Anne-Christin [5 ]
Beissbarth, Tim [2 ]
Holzinger, Andreas [1 ,4 ]
Heider, Dominik [3 ]
机构
[1] Med Univ Graz, Inst Med Informat Stat & Documentat, A-8036 Graz, Austria
[2] Univ Med Ctr Gottingen, Med Bioinformat, D-37077 Gottingen, Germany
[3] Univ Marburg, Dept Math & Comp Sci, Data Sci Biomed, D-35043 Marburg, Germany
[4] Univ Nat Resources & Life Sci, Human Ctr AI Lab, A-1190 Vienna, Austria
[5] Univ Med Ctr Gottingen, Inst Med Informat, D-37075 Gottingen, Germany
基金
奥地利科学基金会;
关键词
D O I
10.1093/bioinformatics/btad703
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Federated learning enables collaboration in medicine, where data is scattered across multiple centers without the need to aggregate the data in a central cloud. While, in general, machine learning models can be applied to a wide range of data types, graph neural networks (GNNs) are particularly developed for graphs, which are very common in the biomedical domain. For instance, a patient can be represented by a protein-protein interaction (PPI) network where the nodes contain the patient-specific omics features. Here, we present our Ensemble-GNN software package, which can be used to deploy federated, ensemble-based GNNs in Python. Ensemble-GNN allows to quickly build predictive models utilizing PPI networks consisting of various node features such as gene expression and/or DNA methylation. We exemplary show the results from a public dataset of 981 patients and 8469 genes from the Cancer Genome Atlas (TCGA). Availability and implementation: The source code is available at https://github.com/pievos101/Ensemble-GNN, and the data at Zenodo (DOI: 10.5281/zenodo.8305122).
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Robust Graph Neural Networks via Ensemble Learning
    Lin, Qi
    Yu, Shuo
    Sun, Ke
    Zhao, Wenhong
    Alfarraj, Osama
    Tolba, Amr
    Xia, Feng
    [J]. MATHEMATICS, 2022, 10 (08)
  • [2] Ensemble and continual federated learning for classification tasks
    Casado, Fernando E.
    Lema, Dylan
    Iglesias, Roberto
    Regueiro, Carlos V.
    Barro, Senen
    [J]. MACHINE LEARNING, 2023, 112 (09) : 3413 - 3453
  • [3] Ensemble and continual federated learning for classification tasks
    Fernando E. Casado
    Dylan Lema
    Roberto Iglesias
    Carlos V. Regueiro
    Senén Barro
    [J]. Machine Learning, 2023, 112 : 3413 - 3453
  • [4] Ensemble of Evolving Neural Networks in Classification
    Sunghwan Sohn
    Cihan H. Dagli
    [J]. Neural Processing Letters, 2004, 19 : 191 - 203
  • [5] Ensemble of evolving neural networks in classification
    Sohn, SH
    Dagli, CHH
    [J]. NEURAL PROCESSING LETTERS, 2004, 19 (03) : 191 - 203
  • [6] Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning
    Liu, Chang
    Lou, Chenfei
    Wang, Runzhong
    Xi, Alan Yuhan
    Shen, Li
    Yan, Junchi
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [7] Forest Cover Classification Using Stacking of Ensemble Learning and Neural Networks
    Patil, Pruthviraj R.
    Sivagami, M.
    [J]. ARTIFICIAL INTELLIGENCE AND EVOLUTIONARY COMPUTATIONS IN ENGINEERING SYSTEMS, 2020, 1056 : 89 - 102
  • [8] Improving Foraminifera Classification Using Convolutional Neural Networks with Ensemble Learning
    Nanni, Loris
    Faldani, Giovanni
    Brahnam, Sheryl
    Bravin, Riccardo
    Feltrin, Elia
    [J]. SIGNALS, 2023, 4 (03): : 524 - 538
  • [9] Reliable Classification with Ensemble Convolutional Neural Networks
    Gao, Zhen
    Zhang, Han
    Wei, Xiaohui
    Yan, Tong
    Guo, Kangkang
    Li, Wenshuo
    Wang, Yu
    Reviriego, Pedro
    [J]. 2020 33RD IEEE INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN VLSI AND NANOTECHNOLOGY SYSTEMS (DFT), 2020,
  • [10] An Ensemble of Convolutional Neural Networks for Audio Classification
    Nanni, Loris
    Maguolo, Gianluca
    Brahnam, Sheryl
    Paci, Michelangelo
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (13):