Remaining Useful Life Prediction and Uncertainty Quantification for Bearings Based on Cascaded Multiscale Convolutional Neural Network

被引:2
|
作者
He, Jialong [1 ]
Wu, Chenchen [1 ]
Luo, Wei [1 ]
Qian, Chenhui [1 ]
Liu, Shaoyang [1 ]
机构
[1] Jilin Univ, Sch Mech & Aerosp Engn, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
Bearing; convolution neural network (CNN); feature extraction; remaining useful life (RUL); uncertainty quantification;
D O I
10.1109/TIM.2023.3347782
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Remaining useful life (RUL) prediction of rolling bearings plays a crucial role in ensuring safe operation and maintenance decisions for equipment. However, due to the influence of monitoring location and working conditions, traditional deep learning methods are challenging to extract multidimensional and multiscale degradation features, decreasing the accuracy of RUL prediction. At the same time, there are uncertainties, such as noise and model parameters, which makes it difficult for RUL's point prediction to meet maintenance requirements. A framework for bearing RUL interval estimation based on a cascaded multiscale convolutional neural network (CMS-CNN) module is proposed. First, depthwise separable convolution (DSC) and dilated causal convolution (DCC) constitute the main framework of the CMS-CNN module in the form of a cascade to realize multidimensional degenerate feature extraction in space and time. The convolution operation with different dilation rates is introduced into the module to achieve multiscale feature extraction and the convolutional block attention module (CBAM) is embedded to adaptively assign the importance of features. In addition, a staged-optimized mean-variance two-branched interval estimation output network layer is constructed to quantify the uncertainty of bearing RUL prediction results. Finally, the method is verified with two rolling bearing datasets. Experimental results show that the proposed method not only has high RUL prediction accuracy, but also accurately gives the uncertainty interval of the prediction results, which is better than some advanced prediction methods.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] Remaining useful life prediction of rolling bearings based on Bayesian neural network and uncertainty quantification
    Jiang, Guang-Jun
    Yang, Jin-Sen
    Cheng, Tian-Cai
    Sun, Hong-Hua
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2023, 39 (05) : 1756 - 1774
  • [2] Uncertainty Quantification of Bearing Remaining Useful Life Based on Convolutional Neural Network
    Wang, Huanjie
    Bai, Xiwei
    Tan, Jie
    [J]. 2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 2893 - 2900
  • [3] Remaining Useful Life Prediction of Rolling Bearings Based on Multiscale Convolutional Neural Network with Integrated Dilated Convolution Blocks
    Wang, Ran
    Shi, Ruyu
    Hu, Xiong
    Shen, Changqing
    [J]. SHOCK AND VIBRATION, 2021, 2021
  • [4] Remaining Useful Life Prediction of Rolling Bearings Based on Multiscale Convolutional Neural Network with Integrated Dilated Convolution Blocks
    Wang, Ran
    Shi, Ruyu
    Hu, Xiong
    Shen, Changqing
    [J]. Shock and Vibration, 2021, 2021
  • [5] Dual-Attention-Based Multiscale Convolutional Neural Network With Stage Division for Remaining Useful Life Prediction of Rolling Bearings
    Jiang, Fei
    Ding, Kang
    He, Guolin
    Lin, Huibin
    Chen, Zhuyun
    Li, Weihua
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [6] Remaining Useful Life Prediction Method for Bearings Based on LSTM with Uncertainty Quantification
    Yang, Jinsong
    Peng, Yizhen
    Xie, Jingsong
    Wang, Pengxi
    [J]. SENSORS, 2022, 22 (12)
  • [7] Multiscale attentional residual neural network framework for remaining useful life prediction of bearings
    Yu, Wen
    Pi, Dechang
    Xie, Lingqiang
    Luo, Yi
    [J]. MEASUREMENT, 2021, 177
  • [8] Remaining useful life prediction for rolling bearings based on similarity feature fusion and convolutional neural network
    Lei Nie
    Lvfan Zhang
    Shiyi Xu
    Wentao Cai
    Haoming Yang
    [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44
  • [9] Remaining useful life prediction for rolling bearings based on similarity feature fusion and convolutional neural network
    Nie, Lei
    Zhang, Lvfan
    Xu, Shiyi
    Cai, Wentao
    Yang, Haoming
    [J]. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (08)
  • [10] Estimation of Bearing Remaining Useful Life Based on Multiscale Convolutional Neural Network
    Zhu, Jun
    Chen, Nan
    Peng, Weiwen
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (04) : 3208 - 3216