BOUNDARY REGULARITY OF BERGMAN KERNEL IN HoLDER SPACE

被引:0
|
作者
Shi, Ziming [1 ]
机构
[1] Rutgers Univ New Brunswick, Dept Math, Piscataway, NJ 08901 USA
关键词
Bergman kernel; Bergman projection; strictly pseudoconvex domain; STRICTLY PSEUDOCONVEX DOMAINS; BIHOLOMORPHIC-MAPPINGS; PROJECTION; LIPSCHITZ; EXTENSION; OPERATORS; COMPLEX;
D O I
10.2140/pjm.2023.324.157
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a bounded strictly pseudoconvex domain in Cn. Assuming bD & ISIN; Ck+3+& alpha; where k is a nonnegative integer and 0 < & alpha; < 1, we show that (1) the Bergman kernel B( & BULL; , w0) & ISIN; Ck+min{& alpha;,1/2}( over bar D), for any w0 & ISIN; D and (2) the Bergman projection on D is a bounded operator from Ck+& beta; (D) to Ck+min{& alpha;,& beta; /2}(D) for any 0 < & beta; < 1. Our results both improve and generalize the work of E. Ligocka.
引用
收藏
页码:157 / 206
页数:52
相关论文
共 50 条