Nitrite is a carcinogenic substance in food. Excessive consumption of nitrite severely endangers human health. However, rapid and accurate quantification of nitrite by a simple tool is still very challenging. In this work, we designed a practical sensing platform based on 8-(o-phenylenediamine)-boron dipyrromethene (BDP-OPD) to determine nitrite in food. BDP-OPD can take a specific diazotization-cyclization cascade reaction with nitrite to form boron dipyrromethene (BODIPY), giving rise to a remarkable chromogenic reaction along with high contrast fluorescence turn-on response towards nitrite. BDP-OPD has high sensitivity, rapid response, and good selectivity. Furthermore, a portable smartphone-based fluorescence device integrated with a self-programmed Python program was fabricated, which has been successfully used to determine nitrite in food with the advan-tages of rapid response, low cost, ease of operation, portability, and satisfactory recoveries (92-112%). The good sensing performance rendered BDP-OPD a promising fluorescence platform for on-site visual detection of nitrite.