Message passing methods on complex networks

被引:14
|
作者
Newman, M. E. J. [1 ,2 ]
机构
[1] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Ctr Study Complex Syst, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
networks; message passing; belief propagation; percolation; GRAPHS;
D O I
10.1098/rspa.2022.0774
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Networks and network computations have become a primary mathematical tool for analyzing the structure of many kinds of complex systems, ranging from the Internet and transportation networks to biochemical interactions and social networks. A common task in network analysis is the calculation of quantities that reside on the nodes of a network, such as centrality measures, probabilities or model states. In this perspective article we discuss message passing methods, a family of techniques for performing such calculations, based on the propagation of information between the nodes of a network. We introduce the message passing approach with a series of examples, give some illustrative applications and results and discuss the deep connections between message passing and phase transitions in networks. We also point out some limitations of the message passing approach and describe some recently introduced methods that address these limitations.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Particle methods as message passing
    Dauwels, Justin
    Korl, Sascha
    Loeliger, Hans-Andrea
    [J]. 2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 2052 - +
  • [2] Message passing on networks with loops
    Cantwell, George T.
    Newman, M. E. J.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (47) : 23398 - 23403
  • [3] Irregular message passing networks
    Li, Xue
    Cheng, Yuanzhi
    [J]. KNOWLEDGE-BASED SYSTEMS, 2022, 257
  • [4] Message Passing Methods for Estimation of Distribution Algorithms Based on Markov Networks
    Santana, Roberto
    Mendiburu, Alexander
    Lozano, Jose A.
    [J]. SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, PT II (SEMCCO 2013), 2013, 8298 : 419 - 430
  • [5] Heterogeneous message passing for heterogeneous networks
    Cantwell, George T.
    Kirkley, Alec
    Radicchi, Filippo
    [J]. PHYSICAL REVIEW E, 2023, 108 (03)
  • [6] Dynamic Graph Message Passing Networks
    Zhang, Li
    Chen, Mohan
    Arnab, Anurag
    Xue, Xiangyang
    Torr, Philip H. S.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 5712 - 5730
  • [7] Partitioning networks into communities by message passing
    Lai, Darong
    Nardini, Christine
    Lu, Hongtao
    [J]. PHYSICAL REVIEW E, 2011, 83 (01)
  • [8] Message Passing in Distributed Wireless Networks
    Aggarwal, Vaneet
    Liu, Youjian
    Sabharwal, Ashutosh
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 1090 - +
  • [9] Message Passing Neural Networks for Hypergraphs
    Heydari, Sajjad
    Livi, Lorenzo
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT II, 2022, 13530 : 583 - 592
  • [10] Dynamic Graph Message Passing Networks
    Zhang, Li
    Xu, Dan
    Arnab, Anurag
    Torr, Philip H. S.
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 3723 - 3732