CO2 flooding in shale oil reservoir with radial borehole fracturing for CO2 storage and enhanced oil recovery

被引:4
|
作者
Dai, Jia-Cheng [1 ]
Wang, Tian-Yu [1 ]
Weng, Jin-Tao [1 ]
Tian, Kang-Jian [1 ]
Zhu, Li-Ying [2 ]
Li, Gen-Sheng [1 ]
机构
[1] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China
[2] China Natl Oil & Gas Explorat & Dev Co Ltd, Beijing 100034, Peoples R China
关键词
Shale oil; Radial borehole fracturing; Embedded discrete fracture model; Enhanced oil recovery; Carbon storage; HYDRAULIC FRACTURE; UNCONVENTIONAL OIL; GAS; INJECTION; MODEL; FLOW; EXPLORATION; PERFORMANCE; SIMULATION; INITIATION;
D O I
10.1016/j.petsci.2023.08.033
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study introduces a novel method integrating CO2 flooding with radial borehole fracturing for enhanced oil recovery and CO2 underground storage, a solution to the limited vertical stimulation reservoir volume in horizontal well fracturing. A numerical model is established to investigate the production rate, reservoir pressure field, and CO2 saturation distribution corresponding to changing time of CO2 flooding with radial borehole fracturing. A sensitivity analysis on the influence of CO2 injection location, layer spacing, pressure difference, borehole number, and hydraulic fractures on oil production and CO2 storage is conducted. The CO2 flooding process is divided into four stages. Reductions in layer spacing will significantly improve oil production rate and gas storage capacity. However, serious gas channeling can occur when the spacing is lower than 20 m. Increasing the pressure difference between the producer and injector, the borehole number, the hydraulic fracture height, and the fracture width can also increase the oil production rate and gas storage rate. Sensitivity analysis shows that layer spacing and fracture height greatly influence gas storage and oil production. Research outcomes are expected to provide a theoretical basis for the efficient development of shale oil reservoirs in the vertical direction. (c) 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
引用
收藏
页码:519 / 534
页数:16
相关论文
共 50 条
  • [1] Oil recovery and CO2 storage in CO2 flooding
    Zhao, Hailong
    Chang, Yuwen
    Feng, Songlin
    [J]. PETROLEUM SCIENCE AND TECHNOLOGY, 2016, 34 (13) : 1151 - 1156
  • [2] CO2 huff-n-puff combined with radial borehole fracturing to enhance oil recovery and store CO2in a shale oil reservoir
    Dai, Jiacheng
    Wang, Tianyu
    Tian, Kangjian
    Weng, Jintao
    Li, Jingbin
    Li, Gensheng
    [J]. GEOENERGY SCIENCE AND ENGINEERING, 2023, 228
  • [3] Enhanced Oil Recovery and CO2 Storage Performance in Continental Shale Oil Reservoirs Using CO2 Pre-Injection Fracturing
    Zhang, An
    Lei, Yalin
    Zhang, Chenjun
    Tao, Jiaping
    [J]. PROCESSES, 2023, 11 (08)
  • [4] On the sustainability of CO2 storage through CO2 - Enhanced oil recovery
    Farajzadeh, R.
    Eftekhari, A. A.
    Dafnomilis, G.
    Lake, L. W.
    Bruining, J.
    [J]. APPLIED ENERGY, 2020, 261
  • [5] Modeling CO2 miscible flooding for enhanced oil recovery
    Ju Binshan
    Wu Yu-Shu
    Qin Jishun
    Fan Tailiang
    Li Zhiping
    [J]. PETROLEUM SCIENCE, 2012, 9 (02) : 192 - 198
  • [6] Modeling CO2 miscible flooding for enhanced oil recovery
    Ju Binshan1
    [J]. Petroleum Science, 2012, (02) : 192 - 198
  • [7] Assessment of CO2 fracturing in China's shale oil reservoir: Fracturing effectiveness and carbon storage potential
    Shi, Wenrui
    Zhu, Ling
    Guo, Meiyu
    Huang, Zisang
    Wang, Ganlu
    Lin, Lijie
    He, Li
    Liao, Yong
    He, Haoran
    Gong, Junshi
    [J]. RESOURCES CONSERVATION AND RECYCLING, 2023, 197
  • [8] Investigation on enhanced oil recovery and CO2 storage efficiency of temperature-resistant CO2 foam flooding
    Chen, Xin
    Zhang, Qingfeng
    Trivedi, Japan
    Li, Yiqiang
    Liu, Jianbin
    Liu, Zheyu
    Liu, Shun
    [J]. FUEL, 2024, 364
  • [9] Mechanism of CO2 enhanced oil recovery in shale reservoirs
    Hai-Bo Li
    Zheng-Ming Yang
    Rui-Shan Li
    Ti-Yao Zhou
    He-Kun Guo
    Xue-Wei Liu
    Yi-Xin Dai
    Zhen-Guo Hu
    Huan Meng
    [J]. Petroleum Science, 2021, 18 (06) : 1788 - 1796
  • [10] Mechanism of CO2 enhanced oil recovery in shale reservoirs
    Li, Hai-Bo
    Yang, Zheng-Ming
    Li, Rui-Shan
    Zhou, Ti-Yao
    Guo, He-Kun
    Liu, Xue-Wei
    Dai, Yi-Xin
    Hu, Zhen-Guo
    Meng, Huan
    [J]. PETROLEUM SCIENCE, 2021, 18 (06) : 1788 - 1796