Direct Z-scheme GaTe/SnS2 van der Waals heterojunction with tunable electronic properties: A promising highly efficient photocatalyst

被引:9
|
作者
Wang, Jiaxin [1 ]
Xuan, Jinzhe [1 ]
Wei, Xing [1 ]
Zhang, Yan [1 ]
Fan, Jibin [1 ]
Ni, Lei [1 ]
Yang, Yun [1 ]
Liu, Jian [2 ]
Tian, Ye [3 ]
Duan, Li [1 ]
机构
[1] Changan Univ, Sch Mat Sci & Engn, Xian 710064, Peoples R China
[2] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
关键词
GaTe/SnS; 2; vdwH; Z-scheme; Photocatalysis; Water splitting; Biaxial strain; OPTICAL-PROPERTIES; SNS2; NANOSHEETS; WATER; HETEROSTRUCTURE; ABSORPTION; REDUCTION; DYNAMICS; STRAIN; RANGE;
D O I
10.1016/j.ijhydene.2023.11.180
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The production of hydrogen through photocatalytic water splitting offers a secure and eco-friendly approach. In this study, the application of GaTe/SnS2 heterojunction in the field of photocatalysis was studied in depth by using the first-principles calculation method. Based on single-layer GaTe and SnS2, a novel two-dimensional GaTe/SnS2 van der Waals heterojunction (vdwH) was constructed. Through analytical calculations, it is obvious that the GaTe/SnS2 heterojunction has an indirect bandgap of 0.85eV. Furthermore, its type-II band alignment facilitates efficient separation of photogenerated electrons and holes across different layers. The application of Bader charge analysis revealed an intriguing observation: the GaTe layer transferred a charge of 0.058e to the SnS2 layer. This charge transfer led to the creation of a robust built-in electric field, which played a pivotal role in efficiently inhibiting the recombination of photogenerated electrons and holes. Under the condition of pH = 0, GaTe/SnS2 heterojunction can promote redox reaction and realize water splitting. In addition, when the biaxial strain of-3%-3 % is applied to the GaTe/SnS2 heterojunction, the band edge position and light absorption properties are effectively changed, and more photons participate in the water splitting process. More importantly, the solar-to-hydrogen (STH) efficiency of GaTe/SnS2 heterojunction reaches 56.6 %, and when epsilon = 3 %, eta STH increases to 58.21 %. Hence, our research showcases the GaTe/SnS2 heterojunction's potential as a highly efficient Z-scheme photocatalyst for water splitting, offering promising prospects for hydrogen production.
引用
收藏
页码:979 / 989
页数:11
相关论文
共 50 条
  • [1] Two-dimensional CdS/SnS2 heterostructure: a highly efficient direct Z-scheme water splitting photocatalyst
    Fu, Can
    Wang, Guangzhao
    Huang, Yuhong
    Chen, Ying
    Yuan, Hongkuan
    Ang, Yee Sin
    Chen, Hong
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (06) : 3826 - 3833
  • [2] Molecular modulation of interfaces in a Z-scheme van der Waals heterojunction for highly efficient photocatalytic CO2 reduction
    Ali, Sharafat
    Ali, Sajjad
    Khan, Imran
    Zahid, Muhammad
    Ismail, Pir Muhammad
    Ismail, Ahmed
    Zada, Amir
    Ullah, Rizwan
    Hayat, Salman
    Ali, Haider
    Kamal, Muhammad Rizwan
    Alibrahim, Khuloud A.
    Bououdina, Mohamed
    Bakhtiar, Syedul Hasnain
    Wu, Xiaoqiang
    Wang, Qingyuan
    Raziq, Fazal
    Qiao, Liang
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 663 : 31 - 42
  • [3] Arsenene/PtO2 heterojunction: a potential Z-scheme photocatalyst with tunable electronic properties and efficient catalytic activity
    Luo, Wentao
    Wang, Jiaxin
    Wei, Xing
    Zhang, Yan
    Yang, Yun
    Liu, Jian
    Tian, Ye
    Li, Ziyuan
    Wei, Shijie
    Duan, Li
    [J]. CATALYSIS SCIENCE & TECHNOLOGY, 2024, 14 (20) : 6085 - 6098
  • [4] PtSe2/SnS2 heterostructure as a direct Z-scheme photocatalyst for water decomposition
    Wang, Jing
    Luan, Lijun
    Chen, Jingliang
    Zhang, Yan
    Wei, Xing
    Fan, Jibin
    Ni, Lei
    Liu, Chen
    Yang, Yun
    Liu, Jian
    Tian, Ye
    Wang, Xuqiang
    Duan, Li
    [J]. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2023, 155
  • [5] GaN/BS van der Waals heterostructure: A direct Z-scheme photocatalyst for overall water splitting
    Luo, Qingqing
    Yin, Shaoqian
    Sun, Xiaoxin
    Tang, Yanan
    Feng, Zhen
    Dai, Xianqi
    [J]. APPLIED SURFACE SCIENCE, 2023, 609
  • [6] Highly efficient photocatalytic water splitting in direct Z-scheme a-In2Se3/Are van der Waals heterostructures
    Lu, Qiang
    Zhang, Lian-Lian
    Xu, Tong-Tong
    Zhang, Bin-Yuan
    Gong, Wei-Jiang
    [J]. SURFACES AND INTERFACES, 2023, 36
  • [7] Two-Dimensional ZnS/SnS2 Heterojunction as a Direct Z-Scheme Photocatalyst for Overall Water Splitting: A DFT Study
    Chen, Xing
    Zhao, Cuihua
    Wu, Hao
    Shi, Yong
    Chen, Cuiting
    Zhou, Xi
    [J]. MATERIALS, 2022, 15 (11)
  • [8] Designing SnS/MoS2 van der Waals heterojunction for direct Z-scheme photocatalytic overall water-splitting by DFT investigation
    Jia, Xiaofang
    Wang, Jinlong
    Lu, Yue
    Sun, Jiaming
    Li, Yang
    Wang, Yuyan
    Zhang, Junying
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (35) : 21321 - 21330
  • [9] Design of a direct Z-scheme GeC/arsenene van der Waals heterostructure as highly efficient photocatalysts for water splitting
    Qiang, Zhi-Bo
    Zhang, Yan
    Ding, Jian-Xin
    Xie, Kang-Xin
    Nouguiza, Hafsa
    Chen, Hua-Xin
    Duan, Li
    Fan, Ji -Bin
    Ni, Lei
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 51 : 809 - 821
  • [10] Mechanism of the two-dimensional WSeTe/Zr2CO2 direct Z-scheme van der Waals heterojunction as a photocatalyst for water splitting
    Cao, Jiameng
    Zhang, Xianbin
    Zhao, Shihan
    Lu, Xiaoyue
    Ma, Haohao
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (35) : 21030 - 21039