Fault Detection using Data-driven LPV State Estimation based on Structural Analysis and ANFIS

被引:4
|
作者
Fang, Xin [1 ,2 ]
Blesa, Joaquim [1 ,2 ,3 ]
Puig, Vicenc [1 ,2 ]
机构
[1] CSIC UPC, Inst Robot & Informat Ind, Llorens & Artigas 4-6, Barcelona 08028, Spain
[2] Univ Politecn Cataluna, Supervis Safety & Automat Control Res Ctr CS2AC, Rambla St Nebridi 22, Terrassa 08222, Spain
[3] UPC, Automat Control Dept ESAII, Eduard Maristany 16, Barcelona 08019, Spain
关键词
DIAGNOSIS;
D O I
10.23919/ECC57647.2023.10178291
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a data-driven fault detection method combining structural analysis (SA) and machine learning data-driven algorithms. Given a graphic (or textual) system description and the available inputs/outputs measurements, the structure of analytical redundancy relations (ARRs) between some inputs and outputs can be determined with the aid of the SA of the system. Then, using a machine learning data-driven approach applied to historical data, analytical relations between inputs and outputs can be obtained. Thereby, instead of finding ARRs from physical mathematical model, ARRs are obtained combining SA and data-driven approaches. In this paper, the adaptive network fuzzy inference system (ANFIS) data-driven approach is used to implement the diagnosis system. Once the ANFIS model has been identified, it is reformulated in linear parameter varying (LPV) form. Then, a fault detection scheme based on a LPV Kalman filter and pole placement method is developed. A well-known case study based on a four-tanks system is used for illustrative purposes.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Fault Diagnosis using Interval Data-driven LPV Observers and Structural Analysis
    Fang, Xin
    Blesa, Joaquim
    Puig, Vicenc
    IFAC PAPERSONLINE, 2024, 58 (04): : 25 - 30
  • [2] An anfis-based data-driven method for Fault Accommodation
    Khosravi, Abbas
    Lu, Jie
    Systems Science, 2006, 32 (04): : 45 - 54
  • [3] Data-Driven Passivity Analysis and Fault Detection Using Reinforcement Learning
    Ma, Haoran
    Zhao, Zhengen
    Li, Zhuyuan
    Yang, Ying
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2024,
  • [4] Fault detection for LTI systems using data-driven dissipativity analysis
    Rosa, Tabitha E.
    Carvalho, Leonardo de Paula
    Gleizer, Gabriel A.
    Jayawardhana, Bayu
    MECHATRONICS, 2024, 97
  • [5] Data-driven fault detection process using correlation based clustering
    Yoo, YoungJun
    COMPUTERS IN INDUSTRY, 2020, 122
  • [6] Data-driven fault detection and estimation in thermal pulse combustors
    Chakraborty, S.
    Gupta, S.
    Ray, A.
    Mukhopadhyay, A.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2008, 222 (G8) : 1097 - 1108
  • [7] Fuel injection fault diagnosis using structural analysis and data-driven residuals
    Allansson, Niklas
    Mohammadi, Arman
    Jung, Daniel
    Krysander, Mattias
    IFAC PAPERSONLINE, 2024, 58 (04): : 360 - 365
  • [8] Data-driven based Fault Diagnosis using Principal Component Analysis
    Shaikh, Shakir M.
    Halepoto, Imtiaz A.
    Phulpoto, Nazar H.
    Memon, Muhammad S.
    Hussain, Ayaz
    Laghari, Asif A.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (07) : 175 - 180
  • [9] Remaining Useful Life Estimation Using ANFIS Algorithm: A Data-Driven Approcah for Prognostics
    Razavi, Seyed Ali
    Najafabadi, Tooraj Abbasian
    Mahmoodian, Ali
    2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 522 - 526
  • [10] Incipient fault detection and estimation based on Jensen-Shannon divergence in a data-driven approach
    Zhang, Xiaoxia
    Delpha, Claude
    Diallo, Demba
    SIGNAL PROCESSING, 2020, 169