Asymptotic expansion of the nonlocal heat content

被引:0
|
作者
Grzywny, Tomasz [1 ]
Lenczewska, Julia [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, PL-50370 Wroclaw, Poland
关键词
asymptotic expansion; characteristic exponent; convolution semi-group; fractional Laplacian; heat content; Holder space; Levy measure; nonlocal operator; perimeter; regular variation; FRACTIONAL LAPLACIANS; PERIMETER;
D O I
10.4064/sm220831-26-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (pt)t >= 0 be a convolution semigroup of probability measures on Rd defined by (Rd)integral(ei)(xi,x) p(t)(dx) = e(-t psi(xi)), xi is an element of R-d, and let Omega be an open subset of R-d with finite Lebesgue measure. We consider the quantity H-Omega(t) = integral(Omega) integral(Omega-x) p(t) (dy)dx, called the heat content. We study its asymptotic expansion psi under mild assumptions on in particular in the case of the alpha-stable semigroup.
引用
收藏
页码:339 / 359
页数:22
相关论文
共 50 条