Robustness of the Stochastic Parameterization of Subgrid-Scale Wind Variability in Sea Surface Fluxes

被引:0
|
作者
Endo, Kota [1 ]
Monahan, Adam h. [1 ]
Bessac, Julie [2 ,6 ]
Christensen, Hannah m. [3 ]
Weitzel, Nils [4 ,5 ]
机构
[1] Univ Victoria, Sch Earth & Ocean Sci, Victoria, BC, Canada
[2] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL USA
[3] Univ Oxford, Dept Phys, Oxford, England
[4] Univ Tubingen, Dept Geosci, Tubingen, Germany
[5] Heidelberg Univ, Inst Environm Phys, Heidelberg, Germany
[6] Natl Renewable Energy Lab, Golden, CO USA
基金
英国自然环境研究理事会; 欧盟地平线“2020”; 加拿大自然科学与工程研究理事会;
关键词
Atmosphere-ocean interaction; Parameterization; Stochastic models; Subgrid-scale processes; Surface fluxes; GRAVITY-WAVE PARAMETERIZATION; ICOSAHEDRAL ATMOSPHERIC MODEL; TURBULENCE CLOSURE-MODEL; GENERAL-CIRCULATION; GLOBAL ATMOSPHERE; DYNAMICAL CORE; SCHEME; RESOLUTION; CONVECTION; DRAG;
D O I
10.1175/MWR-D-22-0319.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
High-resolution numerical models have been used to develop statistical models of the enhancement of sea surface fluxes resulting from spatial variability of sea surface wind. In particular, studies have shown that flux enhancement is not a deterministic function of the resolved state. Previous studies focused on single geographical areas or used a single high-resolution numerical model. This study extends the development of such statistical models by considering six different high-resolution models, four different geographical regions, and three different 10-day periods, allowing for a systematic investigation of the robustness of both the deterministic and stochastic parts of the data-driven parameterization. Results indicate that the deterministic part, based on regressing the unresolved normalized flux onto resolved-scale normalized flux and precipitation, is broadly robust across different models, regions, and time periods. The statistical features of the stochastic part of the model (spatial and temporal autocorrelation and parameters of a Gaussian process fit to the regres-sion residual) are also found to be robust and not strongly sensitive to the underlying model, modeled geographical region, or time period studied. Best -fit Gaussian process parameters display robust spatial heterogeneity across models, indicating potential for improvements to the statistical model. These results illustrate the potential for the development of a generic, explicitly stochastic parameterization of sea surface flux enhancements dependent on wind variability.
引用
收藏
页码:2587 / 2607
页数:21
相关论文
共 50 条
  • [1] Stochastic Parameterization of Subgrid-Scale Velocity Enhancement of Sea Surface Fluxes
    Bessac, Julie
    Monahan, Adam H.
    Christensen, Hannah M.
    Weitzel, Nils
    [J]. MONTHLY WEATHER REVIEW, 2019, 147 (05) : 1447 - 1469
  • [2] Scale-Aware Space-Time Stochastic Parameterization of Subgrid-Scale Velocity Enhancement of Sea Surface Fluxes
    Bessac, Julie
    Christensen, Hannah M.
    Endo, Kota
    Monahan, Adam H.
    Weitzel, Nils
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2021, 13 (04)
  • [3] Modelling of subgrid-scale fluxes
    Wang, Liqiu
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 34 (02) : 368 - 375
  • [4] Subgrid-scale structure and fluxes of turbulence underneath a surface wave
    Chen, Kuanyu
    Wan, Minping
    Wang, Lian-Ping
    Chen, Shiyi
    [J]. JOURNAL OF FLUID MECHANICS, 2019, 878 : 768 - 795
  • [5] The parameterization of subgrid-scale cloud by renormalization methods
    Cairns, B
    [J]. SEVENTH SYMPOSIUM ON GLOBAL CHANGE STUDIES, 1996, : 152 - 155
  • [6] Subgrid-scale parameterization with conditional Markov chains
    Crommelin, Daan
    Vanden-Eijnden, Eric
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 2008, 65 (08) : 2661 - 2675
  • [7] STOCHASTIC BACKSCATTER OF TURBULENCE ENERGY AND SCALAR VARIANCE BY RANDOM SUBGRID-SCALE FLUXES
    SCHUMANN, U
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 451 (1941): : 293 - 318
  • [8] Subgrid-scale variability in the surface energy balance of arctic tundra
    McFadden, JP
    Chapin, FS
    Hollinger, DY
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D22) : 28947 - 28961
  • [9] A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models
    Liang, X
    Xie, ZH
    [J]. ADVANCES IN WATER RESOURCES, 2001, 24 (9-10) : 1173 - 1193
  • [10] PARAMETERIZATION OF DYNAMICAL SUBGRID-SCALE PROCESSES IN A SPECTRAL GCM
    KOSHYK, JN
    BOER, GJ
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 1995, 52 (07) : 965 - 976