A posteriori error estimator for mixed interior penalty discontinuous Galerkin finite element method for the H(curl)-elliptic problems

被引:0
|
作者
Tang, Ming [1 ]
Xing, Xiaoqing [1 ]
Zhong, Liuqiang [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金;
关键词
H(curl)-elliptic problems; Mixed interior penalty discontinuous; Galerkin method; A posterior error estimator; Reliability; Efficiency; CONVERGENCE; APPROXIMATIONS; SINGULARITIES;
D O I
10.1016/j.cam.2023.115407
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we design the first residual type a posteriori error estimator for mixed interior penalty discontinuous Galerkin method for the H(curl)-elliptic problems. Then we prove that our indicator is both reliable and efficient. At last, we present some numerical experiments to validate the performance of the indicator within an adaptive mesh refinement procedure.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] AN EQUILIBRATED A POSTERIORI ERROR ESTIMATOR FOR THE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD
    Braess, D.
    Fraunholz, T.
    Hoppe, R. H. W.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) : 2121 - 2136
  • [2] Convergence of adaptive mixed interior penalty discontinuous Galerkin methods for H(curl)-elliptic problems
    Liu, Kai
    Tang, Ming
    Xing, Xiaoqing
    Zhong, Liuqiang
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 170 : 84 - 94
  • [3] Adaptive Hybridized Interior Penalty Discontinuous Galerkin Methods for H(curl)-Elliptic Problems
    Carstensen, C.
    Hoppe, R. H. W.
    Sharma, N.
    Warburton, T.
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2011, 4 (01) : 13 - 37
  • [4] A NEW A POSTERIORI ERROR ESTIMATE FOR THE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD
    Yang, Wei
    Cao, Luling
    Huang, Yunqing
    Cui, Jintao
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2019, 16 (02) : 210 - 224
  • [5] A recovery-based a posteriori error estimator of the weak Galerkin finite element method for elliptic problems
    Liu, Ying
    Wang, Gang
    Wu, Mengyao
    Nie, Yufeng
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 406
  • [6] An interior penalty discontinuous Galerkin finite element method for quasilinear parabolic problems
    Toulopoulos, Ioannis
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2015, 95 : 42 - 50
  • [7] Guaranteed a posteriori error estimator for mixed finite element methods of elliptic problems
    Kim, Kwang-Yeon
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (24) : 11820 - 11831
  • [8] A posteriori error estimator for eigenvalue problems by mixed finite element method
    JIA ShangHui
    CHEN HongTao
    XIE HeHu
    [J]. Science China Mathematics, 2013, 56 (05) : 888 - 901
  • [9] A posteriori error estimator for eigenvalue problems by mixed finite element method
    ShangHui Jia
    HongTao Chen
    HeHu Xie
    [J]. Science China Mathematics, 2013, 56 : 887 - 900
  • [10] A posteriori error estimator for eigenvalue problems by mixed finite element method
    Jia ShangHui
    Chen HongTao
    Xie HeHu
    [J]. SCIENCE CHINA-MATHEMATICS, 2013, 56 (05) : 887 - 900