Support condition monitoring of monopile-supported offshore wind turbines in layered soil based on model updating

被引:9
|
作者
Ren, Xinran [1 ]
Xu, Ying [1 ,2 ,3 ]
Shen, Tao [1 ]
Wang, Ying [4 ,5 ]
Bhattacharya, Subhamoy [5 ]
机构
[1] Tianjin Univ, Sch Civil Engn, Tianjin 300350, Peoples R China
[2] Tianjin Univ, Key Lab Earthquake Engn Simulat & Seism Resilience, China Earthquake Adm, Tianjin 300350, Peoples R China
[3] Tianjin Univ, Key Lab Coast Civil Struct Safety, China Minist Educ, Tianjin 300350, Peoples R China
[4] Harbin Inst Technol Shenzhen, Sch Civil & Environm Engn, Shenzhen 518055, Guangdong, Peoples R China
[5] Univ Surrey, Dept Civil & Environm Engn, Guildford GU2 7XH, England
基金
中国国家自然科学基金;
关键词
Offshore wind turbines; Pile-soil interaction; Layered soil; Model updating; Foundation stiffness; Soil damping; DYNAMIC-BEHAVIOR; FREQUENCY;
D O I
10.1016/j.marstruc.2022.103342
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Monopile-supported offshore wind turbines (OWTs) are dynamically sensitive structures whose fundamental frequencies may be close to those of environmental and turbine-related excitations. The changes in fundamental frequencies caused by pile-soil interaction (PSI) may result in unwanted resonance and serious O&M (Operation and Maintenance) issues, which have been identified as major challenges in the research field. Therefore, a novel model updating framework with an implicit objective function is proposed to monitor both the stiffness and damping variation of the OWT system based on the measured vibration characteristics, which is further verified by laboratory tests. In particular, layered soil was considered in the tests to simulate the practical soil conditions of Chinese seas. Different pile lengths were introduced to consider the long-term PSI effects for rigid piles and slender piles. The results showed that the variation in the fundamental frequency is significantly reduced in layered soil compared with the pure sand scenario. For the OWT systems in layered soil, the variation in foundation stiffness is negatively related to the burial depth under cyclic loading. The proposed model updating framework is proven reliable for support condition monitoring of OWT systems in complicated soil conditions.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Support condition identification for monopile-supported offshore wind turbines based on time domain model updating
    Liang, Jun
    Kato, Bence
    Fu, Yuhao
    Wang, Ying
    MARINE STRUCTURES, 2025, 99
  • [2] Sensitivity of the seismic response of monopile-supported offshore wind turbines to soil variability
    Panagoulias, S.
    de Winter, C.
    Navalkar, S. T.
    Nernheim, A.
    OCEAN ENGINEERING, 2023, 268
  • [3] Identification of equivalent wind and wave loads for monopile-supported offshore wind turbines in operating condition
    Liang, Jun
    Fu, Yuhao
    Wang, Ying
    Ou, Jinping
    RENEWABLE ENERGY, 2024, 237
  • [4] The dynamics of monopile-supported Wind Turbines in nonlinear soil
    Alexander, N. A.
    Bhattacharya, S.
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, EURODYN 2011, 2011, : 3416 - 3422
  • [5] Effect of scouring in sand on monopile-supported offshore wind turbines
    Abhinav, K. A.
    Saha, Nilanjan
    MARINE GEORESOURCES & GEOTECHNOLOGY, 2017, 35 (06) : 817 - 828
  • [6] Modelling damping sources in monopile-supported offshore wind turbines
    Chen, Chao
    Duffour, Philippe
    WIND ENERGY, 2018, 21 (11) : 1121 - 1140
  • [7] A simplified structural model for monopile-supported offshore wind turbines with tapered towers
    Ko, Yung-Yen
    RENEWABLE ENERGY, 2020, 156 : 777 - 790
  • [8] Research on Verification and Prediction Methods of Soil Damping of Monopile-Supported Offshore Wind Turbines
    Su K.
    Zhu H.
    Zhou J.
    Lai X.
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2024, 57 (02): : 165 - 173
  • [9] Fatigue life analysis of monopile-supported offshore wind turbines based on hyperplastic ratcheting model
    Zha, Xing
    Lai, Yongqing
    Rui, Shengjie
    Guo, Zhen
    APPLIED OCEAN RESEARCH, 2023, 136
  • [10] Fatigue life sensitivity of monopile-supported offshore wind turbines to damping
    Rezaei, Ramtin
    Fromme, Paul
    Duffour, Philippe
    RENEWABLE ENERGY, 2018, 123 : 450 - 459