An exponential integration generalized multiscale finite element method for parabolic problems

被引:3
|
作者
Contreras, L. F. [1 ]
Pardo, D. [3 ,4 ,5 ]
Abreu, E. [2 ]
Munoz-Matute, J. [4 ,6 ]
Diaz, C. [7 ]
Galvis, J. [1 ]
机构
[1] Univ Nacl Colombia, Dept Matemat, Carrera 45 26-85,Edificio Uriel Gutierrez, Bogota, DC, Colombia
[2] Univ Estadual Campinas, Dept Appl Math, Campinas, Brazil
[3] Univ Basque Country UPV EHU, Leioa, Spain
[4] Basque Ctr Appl Math BCAM, Bilbao, Spain
[5] Ikerbasque Basque Fdn Sci, Bilbao, Spain
[6] Univ Texas Austin, Oden Inst Computat Engn & Sci, Austin, TX USA
[7] Toronto Metropolitan Univ, Dept Appl Math, 350 Victoria St, Toronto, ON M5B 2K3, Canada
关键词
Multiscale approximation; Time integration; Functions of matrices; Finite element methods; DOMAIN DECOMPOSITION PRECONDITIONERS; FLOW; EQUATIONS;
D O I
10.1016/j.jcp.2023.112014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider linear and semilinear parabolic problems posed in high-contrast multiscale media in two dimensions. The presence of high-contrast multiscale media adversely affects the accuracy, stability, and overall efficiency of numerical approximations such as finite elements in space combined with some time integrator. In many cases, implementing time discretizations such as finite differences or exponential integrators may be impractical because each time iteration needs the computation of matrix operators involving very large and ill-conditioned sparse matrices. Here, we propose an efficient Generalized Multiscale Finite Element Method (GMsFEM) that is robust against the high-contrast diffusion coefficient. We combine GMsFEM with exponential integration in time to obtain a good approximation of the final time solution. Our approach is efficient and practical because it computes matrix functions of small matrices given by the GMsFEM method. We present representative numerical experiments that show the advantages of combining exponential integration and GMsFEM approximations. The constructions and methods developed here can be easily adapted to three-dimensional domains.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A second-order exponential integration constraint energy minimizing generalized multiscale method for parabolic problems
    Poveda, Leonardo A.
    Galvis, Juan
    Chung, Eric
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 502
  • [2] A Generalized Multiscale Finite Element Method for Thermoelasticity Problems
    Vasilyeva, Maria
    Stalnov, Denis
    [J]. NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 : 713 - 720
  • [3] Generalized Multiscale Finite Element Method and Balanced Truncation for Parameter-Dependent Parabolic Problems
    Jiang, Shan
    Cheng, Yue
    Cheng, Yao
    Huang, Yunqing
    [J]. MATHEMATICS, 2023, 11 (24)
  • [4] A CONSTRAINT ENERGY MINIMIZING GENERALIZED MULTISCALE FINITE ELEMENT METHOD FOR PARABOLIC EQUATIONS
    Li, Mengnan
    Chung, Eric
    Jiang, Lijian
    [J]. MULTISCALE MODELING & SIMULATION, 2019, 17 (03): : 996 - 1018
  • [5] A constraint energy minimizing generalized multiscale finite element method for parabolic equations
    Li, Mengnan
    Chung, Eric
    Jiang, Lijian
    [J]. Multiscale Modeling and Simulation, 2019, 17 (03): : 996 - 1018
  • [6] A Generalized Multiscale Finite Element Method for poroelasticity problems I: Linear problems
    Brown, Donald L.
    Vasilyeva, Maria
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 294 : 372 - 388
  • [7] FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR NONLINEAR MONOTONE PARABOLIC HOMOGENIZATION PROBLEMS
    Abdulle, Assyr
    Huber, Martin E.
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (06): : 1659 - 1697
  • [8] Stable generalized finite element method (SGFEM) for parabolic interface problems
    Zhu, Pengfei
    Zhang, Qinghui
    Liu, Tingyun
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 367
  • [9] A COMBINED FINITE ELEMENT AND MULTISCALE FINITE ELEMENT METHOD FOR THE MULTISCALE ELLIPTIC PROBLEMS
    Deng, Weibing
    Wu, Haijun
    [J]. MULTISCALE MODELING & SIMULATION, 2014, 12 (04): : 1424 - 1457
  • [10] Meshfree Generalized Multiscale Finite Element Method
    Nikiforov, Djulustan
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 474