Global bounded solutions to the Boltzmann equation for a polyatomic gas

被引:3
|
作者
Duan, Renjun [1 ]
Li, Zongguang [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
Boltzmann equation; polyatomic gas; global bounded solution; exponential stability; LINEARIZED BOLTZMANN; CLASSICAL-SOLUTIONS; EXISTENCE; MODEL; MOLECULES;
D O I
10.1142/S0129167X23500362
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the Boltzmann equation modeling the motion of a polyatomic gas where the integration collision operator in comparison with the classical one involves an additional internal energy variable I ? R+ and a parameter d = 2 standing for the number of internal degrees of freedom. In perturbation framework, we establish the global well-posedness for bounded mild solutions near global equilibria on torus. The proof is based on the L-2 n L-8 approach. Precisely, we first study the L-2 decay property for the linearized equation, then use the iteration technique for the linear integral operator to get the linear weighted L-8 decay, and in the end obtain L-8 bounds as well as exponential time decay of solutions for the nonlinear problem with the help of the Duhamel's principle. Throughout the proof, we present a careful analysis for treating the extra effect of internal energy variable I and the parameter d.
引用
收藏
页数:43
相关论文
共 50 条
  • [1] BOUNDED SOLUTIONS FOR THE BOLTZMANN EQUATION
    Guo, Yan
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2010, 68 (01) : 143 - 148
  • [2] GLOBAL SOLUTIONS OF BOLTZMANN-EQUATION IN A BOUNDED CONVEX DOMAIN
    SHIZUTA, Y
    ASANO, K
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1977, 53 (01) : 3 - 5
  • [3] On the Cauchy problem for Boltzmann equation modeling a polyatomic gas
    Gamba, Irene M. M.
    Pavic-Colic, Milana
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (01)
  • [4] BOUNDED SOLUTIONS OF THE BOLTZMANN EQUATION IN THE WHOLE SPACE
    Alexandre, Radjesvarane
    Morimoto, Yoshinori
    Ukai, Seiji
    Xu, Chao-Jiang
    Yang, Tong
    [J]. KINETIC AND RELATED MODELS, 2011, 4 (01) : 17 - 40
  • [5] Global Weak Solutions of the Boltzmann Equation
    Carlo Cercignani
    [J]. Journal of Statistical Physics, 2005, 118 : 333 - 342
  • [6] Global weak solutions of the Boltzmann equation
    Cercignani, C
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2005, 118 (1-2) : 333 - 342
  • [7] GLOBAL SOLUTIONS TO THE BOLTZMANN EQUATION WITH EXTERNAL FORCES
    Ukai, Seiji
    Yang, Tong
    Zhao, Huijiang
    [J]. ANALYSIS AND APPLICATIONS, 2005, 3 (02) : 157 - 193
  • [8] GLOBAL-SOLUTIONS OF BOLTZMANN-EQUATION
    DIPERNA, R
    LIONS, PL
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 306 (07): : 343 - 346
  • [9] GLOBAL SOLUTIONS OF THE BOLTZMANN-EQUATION ON A LATTICE
    CERCIGNANI, C
    GREENBERG, W
    ZWEIFEL, PF
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1979, 20 (04) : 449 - 462
  • [10] FORMULATING A BOLTZMANN EQUATION FOR POLYATOMIC GASES
    BERROIR, A
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 267 (07): : 301 - &