Composition operator on F(p,q,s) spaces in the unit ball of Cn

被引:1
|
作者
Xu, Si [1 ]
Zhang, Xuejun [2 ]
机构
[1] Hunan Inst Engn, Sch Computat Sci & Elect, Xiangtan, Peoples R China
[2] Hunan Normal Univ, Coll Math & Stat, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
Composition operator; F(p; q; s) space; boundedness; compactness; unit ball; WEIGHTED COMPOSITION OPERATORS; GENERALIZED COMPOSITION OPERATORS; S) SPACE; EQUIVALENT NORMS; ZYGMUND SPACES; BLOCH-SPACES; F(P; ALPHA;
D O I
10.1080/17476933.2022.2142783
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors characterize those phi, holomorphic self-maps of B, for which the composition operator C-phi is bounded (or compact) on F(p,q,s) in some cases. Moreover, the following results are given. (1)If 1 < p < q + n + 1 and C phi satisfies some boundedness conditions, then C-phi is compact on F(p,q,s) if and only if<br />lim(|z|-> 1-)1-|z|(2 )/1-|phi(z)|2=0. (2) If 1 <= p <infinity and q+n+1 < p <infinity, then C-phi is a compact operator on F(p,q,s) if and only if ?phi?(infinity)< 1 and phi(l)is an element of F(p,q,s) for all l is an element of{1,2, horizontexpressionl ellipsis ,n}.
引用
收藏
页码:403 / 417
页数:15
相关论文
共 50 条