Biocatalytic Enantioselective Synthesis of Chiral β-Hydroxy Nitriles Using Cyanohydrins as Cyano Sources

被引:7
|
作者
Guan, Xue-E [1 ,2 ,3 ]
Miao, Run-Ping [1 ,2 ,3 ]
Hua, Xia [1 ,2 ,3 ]
Jin, Xiao [1 ,2 ,3 ]
Deng, Guo-Zhong [1 ,2 ,3 ]
Cui, Bao-Dong [1 ,2 ,3 ]
Han, Wen-Yong [1 ,2 ,3 ]
Wan, Nan-Wei [1 ,2 ,3 ]
Chen, Yong-Zheng [2 ,3 ]
机构
[1] Zunyi Med Univ, Gener Drug Res Ctr Guizhou Prov, Green Pharmaceut Engn Res Ctr Guizhou Prov,Sch Ph, Key Lab Biocatalysis Chiral Drug Synth Guizhou Pr, Zunyi 563000, Guizhou, Peoples R China
[2] Zunyi Med Univ, Key Lab Basic Pharmacol, Minist Educ, Zunyi 563000, Guizhou, Peoples R China
[3] Zunyi Med Univ, Joint Int Res Lab Ethnomed, Minist Educ, Zunyi 563000, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
biocatalysis; halohydrindehalogenase; cyanation; epoxides; beta-hydroxynitriles; ASYMMETRIC TRANSFER HYDROGENATION; PALLADIUM-CATALYZED CYANATION; HALOHYDRIN DEHALOGENASE; KINETIC RESOLUTION; EPOXIDES; DISCOVERY; IDENTIFICATION; ROUTE;
D O I
10.1021/acscatal.3c03173
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of catalytic enantioselective cyanation methods for preparing valuable chiral nitriles is of great interest in the areas of pharmaceutical synthesis and organic chemistry. In this study, we presented an enzymatic enantioselective cyanation strategy for the synthesis of chiral beta-hydroxy nitriles using cyanohydrins as cyano sources. By combining enzyme screening and protein engineering of halohydrin dehalogenases, biocatalytic enantioselective cyanation of various aryl, alkyl, and spiro epoxides was achieved to afford the corresponding chiral beta-hydroxy nitriles in good yields (up to 47%) and excellent optical purities (up to >99% ee). Additionally, we also demonstrated that the biocatalytic cyanation method can be used for the enantiocomplementary and large-scale synthesis of chiral beta-hydroxy nitriles.
引用
收藏
页码:13597 / 13606
页数:10
相关论文
共 50 条
  • [1] Synthesis of γ-hydroxy-α,β-unsaturated esters and nitriles from chiral cyanohydrins
    Marcus, J
    van Meurs, PJ
    van den Nieuwendijk, AMCH
    Porchet, M
    Brussee, J
    van der Gen, A
    TETRAHEDRON, 2000, 56 (16) : 2491 - 2495
  • [2] HIGHLY ENANTIOSELECTIVE SYNTHESIS OF BETA-HYDROXY NITRILES BY THE CYANOMETHYLATION OF ALDEHYDES USING DPMPM AS A CHIRAL CATALYST OR LIGAND
    SOAI, K
    HIROSE, Y
    SAKATA, S
    TETRAHEDRON-ASYMMETRY, 1992, 3 (06) : 677 - 680
  • [3] Synthesis of Aromatic Nitriles Using Nonmetallic Cyano-Group Sources
    Kim, Jinho
    Kim, Hyun Jin
    Chang, Sukbok
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (48) : 11948 - 11959
  • [4] Biphasic Bioelectrocatalytic Synthesis of Chiral β-Hydroxy Nitriles
    Dong, Fangyuan
    Chen, Hui
    Malapit, Christian A.
    Prater, Matthew B.
    Li, Min
    Yuan, Mengwei
    Lim, Koun
    Minteer, Shelley D.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (18) : 8374 - 8382
  • [6] BINOLAM, a recoverable chiral ligand for bifunctional enantioselective catalysis:: The asymmetric synthesis of cyanohydrins
    Casas, J
    Nájera, C
    Sansano, JM
    Saá, JM
    ORGANIC LETTERS, 2002, 4 (15) : 2589 - 2592
  • [7] Cyanide-Free and Broadly Applicable Enantioselective Synthetic Platform for Chiral Nitriles through a Biocatalytic Approach
    Betke, Tobias
    Rommelmann, Philipp
    Oike, Keiko
    Asano, Yasuhisa
    Groeger, Harald
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (40) : 12361 - 12366
  • [8] Radical fragmentation of β-hydroxy azides.: Synthesis of chiral nitriles
    Hernández, R
    León, EI
    Moreno, P
    Suárez, E
    JOURNAL OF ORGANIC CHEMISTRY, 1997, 62 (26): : 8974 - 8975
  • [9] Lipase-catalyzed enantioselective transesterification of cyanohydrins for the synthesis of (S)-α-cyano-3-phenoxybenzyl acetate
    Zhu, Y
    Yang, LR
    Zhu, ZQ
    Yao, SJ
    Cen, PL
    ENZYME ENGINEERING XIV, 1998, 864 : 646 - 648
  • [10] Cyanide-Free Enantioselective Catalytic Strategies for the Synthesis of Chiral Nitriles
    Groeger, Harald
    Asano, Yasuhisa
    JOURNAL OF ORGANIC CHEMISTRY, 2020, 85 (10): : 6243 - 6251