Semi-supervised estimation for the varying coefficient regression model

被引:0
|
作者
Lai, Peng [1 ]
Tian, Wenxin [1 ]
Zhou, Yanqiu [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
[2] Guangxi Univ Sci & Technol, Sch Sci, Liuzhou 545006, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 01期
基金
中国国家自然科学基金;
关键词
semi-supervised learning; varying coefficient regression model; intercept model; locally weighted regression model; EFFICIENT ESTIMATION;
D O I
10.3934/math.2024004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In many cases, the 'labeled' outcome is difficult to observe and may require a complicated or expensive procedure, and the predictor information is easy to be obtained. We propose a semisupervised estimator for the one-dimensional varying coefficient regression model which improves the conventional supervised estimator by using the unlabeled data efficiently. The semi-supervised estimator is proposed by introducing the intercept model and its asymptotic properties are proven. The Monte Carlo simulation studies and a real data example are conducted to examine the finite sample performance of the proposed procedure.
引用
收藏
页码:55 / 72
页数:18
相关论文
共 50 条
  • [1] Distributed Semi-supervised Regression Learning with Coefficient Regularization
    Guo, Qin
    [J]. RESULTS IN MATHEMATICS, 2022, 77 (02)
  • [2] Distributed Semi-supervised Regression Learning with Coefficient Regularization
    Qin Guo
    [J]. Results in Mathematics, 2022, 77
  • [3] Semi-supervised kernel methods for regression estimation
    Pozdnoukhov, Alexei
    Bengio, Samy
    [J]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 5435 - 5438
  • [4] Semi-supervised Contrastive Regression for Estimation of Eye Gaze
    Maiti, Somsukla
    Gupta, Akshansh
    [J]. PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2023, 2023, 14301 : 252 - 259
  • [5] Semi-Supervised Linear Regression
    Azriel, David
    Brown, Lawrence D.
    Sklar, Michael
    Berk, Richard
    Buja, Andreas
    Zhao, Linda
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (540) : 2238 - 2251
  • [6] Semi-supervised logistic regression
    Amini, MR
    Gallinari, P
    [J]. ECAI 2002: 15TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2002, 77 : 390 - 394
  • [7] Semi-supervised kernel regression
    Wang, Meng
    Hua, Xian-Sheng
    Song, Yan
    Dai, Li-Rong
    Zhang, Hong-Jiang
    [J]. ICDM 2006: Sixth International Conference on Data Mining, Proceedings, 2006, : 1130 - 1135
  • [8] Distributed Estimation on Semi-Supervised Generalized Linear Model
    Tu, Jiyuan
    Liu, Weidong
    Mao, Xiaojun
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [9] Semi-Supervised Graph Imbalanced Regression
    Liu, Gang
    Zhao, Tong
    Inae, Eric
    Luo, Tengfei
    Jiang, Meng
    [J]. PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 1453 - 1465
  • [10] Semi-supervised Active Linear Regression
    Devvrit, Fnu
    Rajaraman, Nived
    Awasthi, Pranjal
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,