Dynamic Fracture and Crack Arrest Toughness Evaluation of High-Performance Steel Used in Highway Bridges

被引:0
|
作者
Collins, William N. [1 ]
Yount, Tristan D. [1 ]
Sherman, Ryan J. [2 ]
Leon, Roberto T. [3 ]
Connor, Robert J. [4 ]
机构
[1] Univ Kansas, Dept Civil Environm & Architectural Engn, Lawrence, KS 66045 USA
[2] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
[3] Virginia Polytech Inst & State Univ, Charles Edward Via Jr Dept Civil & Environm Engn, Blacksburg, VA 24061 USA
[4] Purdue Univ, Lyles Sch Civil Engn, W Lafayette, IN 47907 USA
关键词
impact energy; fracture toughness; master curve; stress intensity rate; high-performance steel;
D O I
10.3390/ma16093402
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Impact energy tests are an efficient method of verifying adequate toughness of steel prior to it being put into service. Based on a multitude of historical correlations between impact energy and fracture toughness, minimum impact energy requirements that correspond to desired levels of fracture toughness are prescribed by steel bridge design specifications. Research characterizing the fracture behavior of grade 485 and 690 (70 and 100) high-performance steel utilized impact, fracture toughness, and crack arrest testing to verify adequate performance for bridge applications. Fracture toughness results from both quasi-static and dynamic stress intensity rate tests were analyzed using the most recently adopted master curve methodology. Both impact and fracture toughness tests indicated performance significantly greater than the minimum required by material specifications. Even at the AASHTO Zone III service temperature, which is significantly colder than prescribed test temperatures, minimum average impact energy requirements were greatly exceeded. All master curve reference temperatures, both for quasi-static and dynamic loading rates, were found to be colder than the Zone III minimum service temperature. Three correlations between impact energy and fracture toughness were evaluated and found to estimate reference temperatures that are conservative by 12 to 50 degrees C (22 to 90 degrees F) on average for the grades and specimen types tested. The evaluation of two reference temperature shifts intended to account for the loading rate was also performed and the results are discussed.
引用
收藏
页数:23
相关论文
共 50 条