Optimizing Building Short-Term Load Forecasting: A Comparative Analysis of Machine Learning Models

被引:0
|
作者
Koukaras, Paraskevas [1 ]
Mustapha, Akeem [1 ]
Mystakidis, Aristeidis [1 ]
Tjortjis, Christos [1 ]
机构
[1] Int Hellen Univ, Sch Sci & Technol, Thessaloniki 57001, Greece
关键词
time series forecasting; energy load forecasting; machine learning; prediction model; smart building; SMART METER DATA; ENERGY-CONSUMPTION; ELECTRICITY CONSUMPTION; PREDICTION; WEATHER; DEMAND; DETERMINANTS; APPLIANCES; REGRESSION; EFFICIENCY;
D O I
10.3390/en17061450
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The building sector, known for its high energy consumption, needs to reduce its energy use due to rising greenhouse gas emissions. To attain this goal, a projection for domestic energy usage is needed. This work optimizes short-term load forecasting (STLF) in the building sector while considering several variables (energy consumption/generation, weather information, etc.) that impact energy use. It performs a comparative analysis of various machine learning (ML) models based on different data resolutions and time steps ahead (15 min, 30 min, and 1 h with 4-step-, 2-step-, and 1-step-ahead, respectively) to identify the most accurate prediction method. Performance assessment showed that models like histogram gradient-boosting regression (HGBR), light gradient-boosting machine regression (LGBMR), extra trees regression (ETR), ridge regression (RR), Bayesian ridge regression (BRR), and categorical boosting regression (CBR) outperformed others, each for a specific resolution. Model performance was reported using R2, root mean square error (RMSE), coefficient of variation of RMSE (CVRMSE), normalized RMSE (NRMSE), mean absolute error (MAE), and execution time. The best overall model performance indicated that the resampled 1 h 1-step-ahead prediction was more accurate than the 15 min 4-step-ahead and the 30 min 2-step-ahead predictions. Findings reveal that data preparation is vital for the accuracy of prediction models and should be model-adjusted.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] SHORT-TERM LOAD FORECASTING BY MACHINE LEARNING
    Hsu, Chung-Chian
    Chen, Xiang-Ting
    Chen, Yu-Sheng
    Chang, Arthur
    [J]. 2020 INTERNATIONAL SYMPOSIUM ON COMMUNITY-CENTRIC SYSTEMS (CCS), 2020,
  • [2] Machine learning techniques for short-term load forecasting
    Becirovic, Elvisa
    Cosovic, Marijana
    [J]. PROCEEDINGS OF THE 2016 4TH INTERNATIONAL SYMPOSIUM ON ENVIRONMENTAL FRIENDLY ENERGIES AND APPLICATIONS (EFEA), 2016,
  • [3] Short-Term Electricity Load Forecasting with Machine Learning
    Madrid, Ernesto Aguilar
    Antonio, Nuno
    [J]. INFORMATION, 2021, 12 (02) : 1 - 21
  • [4] Short-Term Electrical Load Forecasting using Predictive Machine Learning Models
    Warrior, Karun P.
    Shrenik, M.
    Soni, Nimish
    [J]. 2016 IEEE ANNUAL INDIA CONFERENCE (INDICON), 2016,
  • [5] Automated Machine Learning for Short-term Electric Load Forecasting
    Wang, Can
    Back, Thomas
    Hoos, Holger H.
    Baratchi, Mitra
    Limmer, Steffen
    Olhofer, Markus
    [J]. 2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 314 - 321
  • [6] Machine Learning for Short-Term Load Forecasting in Smart Grids
    Ibrahim, Bibi
    Rabelo, Luis
    Gutierrez-Franco, Edgar
    Clavijo-Buritica, Nicolas
    [J]. ENERGIES, 2022, 15 (21)
  • [7] Data driven machine learning models for short-term load forecasting considering electrical vehicle load
    Gujjarlapudi, Ch Sekhar
    Sarkar, Dipu
    Gunturi, Sravan Kumar
    [J]. ENERGY STORAGE, 2023, 5 (07)
  • [8] Enhanced short-term load forecasting with hybrid machine learning models: CatBoost and XGBoost approaches
    Zhang, Lijie
    Janosik, Dominik
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 241
  • [9] An ensemble approach for short-term load forecasting by extreme learning machine
    Li, Song
    Goel, Lalit
    Wang, Peng
    [J]. APPLIED ENERGY, 2016, 170 : 22 - 29
  • [10] Machine-Learning based methods in short-term load forecasting
    Guo, Weilin
    Che, Liang
    Shahidehpour, Mohammad
    Wan, Xin
    [J]. Electricity Journal, 2021, 34 (01):