Optimal blowup stability for supercritical wave maps

被引:0
|
作者
Donninger, Roland [1 ]
Wallauch, David [1 ]
机构
[1] Univ Wien, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Wave maps; Blowup; Stability; Self-similar; LARGE ENERGY SOLUTIONS; SELF-SIMILAR BLOWUP; GLOBAL REGULARITY; MODE-STABILITY; WELL-POSEDNESS; STABLE BLOWUP; EQUIVARIANT; SINGULARITIES; SCATTERING; EXISTENCE;
D O I
10.1016/j.aim.2023.109291
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study corotational wave maps from (1 + 4)-dimensional Minkowski space into the 4-sphere. We prove the stability of an explicitly known self-similar wave map under perturbations that are small in the critical Sobolev space. (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:86
相关论文
共 50 条
  • [1] Globally stable blowup profile for supercritical wave maps in all dimensions
    Glogic, Irfan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2025, 64 (02)
  • [2] ON THE EXISTENCE AND STABILITY OF BLOWUP FOR WAVE MAPS INTO A NEGATIVELY CURVED TARGET
    Donninger, Roland
    Glogic, Irfan
    ANALYSIS & PDE, 2019, 12 (02): : 389 - 416
  • [3] Blowup stability at optimal regularity for the critical wave equation
    Donninger, Roland
    Rao, Ziping
    ADVANCES IN MATHEMATICS, 2020, 370
  • [4] On Blowup in Supercritical Wave Equations
    Roland Donninger
    Birgit Schörkhuber
    Communications in Mathematical Physics, 2016, 346 : 907 - 943
  • [5] On Blowup in Supercritical Wave Equations
    Donninger, Roland
    Schoerkhuber, Birgit
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 346 (03) : 907 - 943
  • [6] Hyperboloidal Similarity Coordinates and a Globally Stable Blowup Profile for Supercritical Wave Maps
    Biernat, Pawel
    Donninger, Roland
    Schoerkhuber, Birgit
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (21) : 16530 - 16591
  • [7] ON BLOWUP FOR THE SUPERCRITICAL QUADRATIC WAVE EQUATION
    Csobo, Elek
    Glogic, Irfan
    Schoerkhuber, Birgit
    ANALYSIS & PDE, 2024, 17 (02): : 617 - 680
  • [8] Construction of type II blowup solutions for the 1-corotational energy supercritical wave maps
    Ghoul, T.
    Ibrahim, S.
    Nguyen, V. T.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (07) : 2968 - 3047
  • [9] Threshold for blowup for the supercritical cubic wave equation
    Glogic, Irfan
    Maliborski, Maciej
    Schoerkhuber, Birgit
    NONLINEARITY, 2020, 33 (05) : 2143 - 2158
  • [10] Threshold for blowup for equivariant wave maps in higher dimensions
    Biernat, Pawel
    Bizon, Piotr
    Maliborski, Maciej
    NONLINEARITY, 2017, 30 (04) : 1513 - 1522