Laser-Induced Fabrication of Electrodes on Graphene Oxide-MXene Composites for Planar Supercapacitors

被引:10
|
作者
Fu, Xiu-Yan [1 ]
Shu, Ruo-Yu [1 ]
Ma, Chang-Jing [2 ]
Zhang, Yu-Yin [2 ]
Jiang, Hao-Bo [1 ]
机构
[1] Jilin Normal Univ, Key Lab Funct Mat Phys & Chem, Minist Educ, Changchun 130103, Jilin, Peoples R China
[2] Jilin Normal Univ, Coll Informat & Technol, Changchun 130103, Jilin, Peoples R China
关键词
graphene oxide; self-assembled; laser-matter interaction; supercapacitor; MICRO-SUPERCAPACITORS; PERFORMANCE;
D O I
10.1021/acsanm.3c00043
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Graphene-based supercapacitors are powerful devices for supporting smart wearable electronics. However, the properties of the as-prepared graphene and its analogues differ from the expected characteristics, which hinder the development of graphene-based energy storage devices. Herein, we demonstrated the fabrication of planar supercapacitors based on laser-induced electrostatic self-assembled graphene oxide-MXene (GO-M) composites. Owing to the synergetic effect of the laser-matter interaction and electrostatic self-assembly, the as-prepared reduced GO-M (R-GO-M) showed good conductivity and a better layered micro-/nanostructure than reduced graphene oxide (RGO). Moreover, in this laser-induced process, MXene was introduced in R-GO-M, which offered more active sites. Therefore, the supercapacitor based on R-GO-M exhibited noticeable capacity enhancement, five times more than the value of the RGO-based supercapacitor. Furthermore, after comprehensive electrochemical performance analysis, the proper electrostatic self-assembly ratio was confirmed to be 10:1. We believe that the laser fabrication technique combined with a simple electrostatic self-assembly mechanism will promote the development of graphenebased energy storage devices using a simple but effective method.
引用
收藏
页码:4567 / 4572
页数:6
相关论文
共 50 条
  • [1] Programmable patterning fabrication of laser-induced graphene-MXene composite electrodes for flexible planar supercapacitors
    Xiu-Yan Fu
    Yu-Yin Zhang
    Chang-Jing Ma
    Hao-Bo Jiang
    OPTICS LETTERS, 2022, 47 (06) : 1502 - 1505
  • [2] Fabrication of flexible planar micro-supercapacitors using laser scribed graphene electrodes incorporated with MXene
    Zhu, Yiyun
    Ni, Zhuoya
    Gao, Jie
    Zhang, Da
    Wang, Shumeng
    Zhao, Jiang
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2023, 183
  • [3] Laser-Induced Graphene on Paper toward Efficient Fabrication of Flexible, Planar Electrodes for Electrochemical Sensing
    Pinheiro, Tomas
    Silvestre, Sara
    Coelho, Joao
    Marques, Ana C.
    Martins, Rodrigo
    Sales, M. Goreti F.
    Fortunato, Elvira
    ADVANCED MATERIALS INTERFACES, 2021, 8 (22)
  • [4] Electrostatic self-assembled MXene-graphene oxide composite electrodes for planar supercapacitors
    Fu, Xiu-Yan
    Ma, Chang-Jing
    Shu, Ruo-Yu
    Zhang, Yu-Yin
    Jiang, Hao-Bo
    APPLIED PHYSICS LETTERS, 2023, 122 (11)
  • [5] Graphene oxide humidity sensor with laser-induced graphene porous electrodes
    Zhu, Congcong
    Tao, Lu-Qi
    Wang, Ying
    Zheng, Kai
    Yu, Jiabing
    Xiandong, L.
    Chen, Xianping
    Huang, Yexiong
    SENSORS AND ACTUATORS B-CHEMICAL, 2020, 325 (325):
  • [6] Fabrication of interdigitated electrodes of graphene oxide/silica by femtosecond laser-induced forward transfer for sensing applications
    Paula, Kelly T.
    Santos, Sabrina N. C.
    Facure, Murilo H. M.
    Araujo, Francineide L.
    Andrade, Marcelo M. B.
    Correa, Daniel S.
    Mendonca, Cleber R.
    JOURNAL OF APPLIED PHYSICS, 2023, 133 (05)
  • [7] Review article laser-induced hyperthermia on graphene oxide composites
    Laura González-Rodríguez
    Sara Pérez-Davila
    Miriam López-Álvarez
    Stefano Chiussi
    Julia Serra
    Pío González
    Journal of Nanobiotechnology, 21
  • [8] Review article laser-induced hyperthermia on graphene oxide composites
    Gonzalez-Rodriguez, Laura
    Perez-Davila, Sara
    Lopez-Alvarez, Miriam
    Chiussi, Stefano
    Serra, Julia
    Gonzalez, Pio
    JOURNAL OF NANOBIOTECHNOLOGY, 2023, 21 (01)
  • [9] Decoration of laser induced graphene with MXene and manganese oxide for fabrication of a hybrid supercapacitor
    Reina, Marco
    Serrapede, Mara
    Zaccagnini, Pietro
    Pedico, Alessandro
    Castellino, Micaela
    Bianco, Stefano
    Ouisse, Thierry
    Pazniak, Hanna
    Gonzalez-Julian, Jesus
    Lamberti, Andrea
    ELECTROCHIMICA ACTA, 2023, 468
  • [10] Bioderived Laser-Induced Graphene for Sensors and Supercapacitors
    Bressi, Anna Chiara
    Dallinger, Alexander
    Steksova, Yulia
    Greco, Francesco
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (30) : 35788 - 35814