Poisson algebra structure on the invariants of pairs of matrices of degree three

被引:2
|
作者
Normatov, Z. [1 ]
Turdibaev, R. [1 ,2 ]
机构
[1] Uzbek Acad Sci, V I Romanovskiy Inst Math, Univ St 4b, Tashkent 100174, Uzbekistan
[2] AKFA Univ, Natl Pk St, Tashkent, Uzbekistan
关键词
Poisson algebra; invariant theory; RING;
D O I
10.1142/S0219498823500652
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a table of multiplication of the Poisson algebra on the minimal set of generators of the invariants of pairs of matrices of degree three.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Noncommutative Poisson structure and invariants of matrices
    Eshmatov, Farkhod
    Garcia-Martinez, Xabier
    Turdibaev, Rustam
    ADVANCES IN MATHEMATICS, 2025, 469
  • [2] Feedback invariants of supplementary pairs of matrices
    Baragana, I
    Zaballa, I
    AUTOMATICA, 1997, 33 (12) : 2119 - 2130
  • [3] Trace groups of certain poisson algebra invariants
    Alev, Jacques
    Foissy, Loiec
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (01) : 368 - 388
  • [4] ON THE POISSON BRACKET ALGEBRA OF MONODROMY MATRICES
    DUNCAN, A
    NICOLAI, H
    NIEDERMAIER, M
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1990, 46 (01): : 147 - 150
  • [5] On algebra generated by pairs of conjugate matrices
    Ikramov, Kh.D.
    Chugunov, V.N.
    Vestnik Moskovskogo Universiteta. Ser. 15 Vychislitel'naya Matematika i Kibernetika, 1999, (01): : 49 - 50
  • [6] Feedback invariants of supplementary controllable pairs of matrices
    Baragana, I
    Zaballa, I
    SYSTEM STRUCTURE AND CONTROL 1995, 1996, : 163 - 167
  • [7] Directed graphs and Kronecker invariants of pairs of matrices
    Towber, Jacob
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2008, 17 (01) : 75 - 132
  • [8] Defining Relations for the Algebra of Invariants of 2×2 Matrices
    Vesselin Drensky
    Algebras and Representation Theory, 2003, 6 : 193 - 214
  • [9] The ring of invariants of pairs of 3 x 3 matrices
    Garcia-Martinez, Xabier
    Normatov, Zafar
    Turdibaev, Rustam
    JOURNAL OF ALGEBRA, 2022, 603 : 201 - 212
  • [10] Cohomology structure for a Poisson algebra:Ⅱ
    Yan-Hong Bao
    Yu Ye
    Science China(Mathematics), 2021, 64 (05) : 903 - 920