Recent advances in triboelectric nanogenerator-based self-powered sensors for monitoring human body signals

被引:39
|
作者
Ou-Yang, Wei [1 ]
Liu, Liqiang [2 ]
Xie, Mingjun [2 ]
Zhou, Siqian [1 ]
Hu, Xiaowei [2 ]
Wu, Han [2 ]
Tian, Zhiyu [2 ]
Chen, Xucong [2 ]
Zhu, Yirui [2 ]
Li, Jun [2 ]
机构
[1] East China Normal Univ, Engn Res Ctr Nanophoton & Adv Instrument, Sch Phys & Elect Sci, Minist Educ, Shanghai 200241, Peoples R China
[2] Tongji Univ, Coll Elect & Informat Engn, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Self-powered sensor; Human body monitoring; Triboelectric nanogenerator; Physiological signals; Motion signals; PEROVSKITE SOLAR-CELLS; WAVE ENERGY; PERFORMANCE; VIBRATION; EFFICIENT; HYDROGEL; SYSTEMS; DENSITY; SOFT;
D O I
10.1016/j.nanoen.2023.109151
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, there is a growing emphasis on the utilization of wearable devices for monitoring various aspects of human body movement. However, a persistent obstacle in the way of their widespread adoption is the requirement for an external power to keep them operational. Triboelectric nanogenerator (TENG), an emerging power technology, can convert low-frequency mechanical energy into real-time electrical signals and obtain corresponding mechanical motion characteristics, enabling self-powered human body signal monitoring with advantages of compact size, easy preparation, and low cost. It offers a promising avenue for advancing the field of human motion monitoring without an external power. In this review, we systematically review the latest progress of TENG-based human body signals sensors (HBSSs) in terms of working mechanism, design principles, function integrations and monitoring accuracy, as well as the corresponding TENG based wearable device advantages in sensitivity, stability and wearing comfort. According to the monitoring field, TENG-based HBSSs can be divided into two kinds of researching directions, which contain the basic physiological signals monitoring and motion signals monitoring. Some representative applications in these two aspects are summarized to highlight the superiorities of TENG-based HBSSs. Further, the current challenges and promising solutions for future TENGbased HBSS are outlined, including sensitivity, stability, and wearing comfort, which will better steer new researchers toward a deeper understanding and exploration of TENG for the self-powered sensing technology.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Machine learning-assisted triboelectric nanogenerator-based self-powered sensors
    Zhang, Renyun
    CELL REPORTS PHYSICAL SCIENCE, 2024, 5 (04):
  • [2] Recent Advances in Triboelectric Nanogenerator-Based Health Monitoring
    Yi, Fang
    Zhang, Zheng
    Kang, Zhuo
    Liao, Qingliang
    Zhang, Yue
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (41)
  • [3] Nanogenerator-based self-powered sensors for data collection
    Shao, Yicheng
    Shen, Maoliang
    Zhou, Yuankai
    Cui, Xin
    Li, Lijie
    Zhang, Yan
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2021, 12 : 680 - 693
  • [4] Self-powered pressure sensors based on triboelectric nanogenerator
    Xu, Mengfei
    Tao, Kai
    Chen, Zhensheng
    Chen, Hao
    IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 3498 - 3501
  • [5] Nanogenerator-Based Self-Powered Sensors for Wearable and Implantable Electronics
    Li, Zhe
    Zheng, Qiang
    Wang, Zhong Lin
    Li, Zhou
    RESEARCH, 2020, 2020
  • [6] Metal-Organic Framework: A Novel Material for Triboelectric Nanogenerator-Based Self-Powered Sensors and Systems
    Khandelwal, Gaurav
    Chandrasekhar, Arunkumar
    Raj, Nirmal Prashanth Maria Joseph
    Kim, Sang-Jae
    ADVANCED ENERGY MATERIALS, 2019, 9 (14)
  • [7] A Triboelectric Nanogenerator-Based Wide Range Self-Powered Flexible Pressure Sensor
    Min, Guanbo
    Khandelwal, Gaurav
    Chirila, Radu
    Dahiya, Abhishek Singh
    Mulvihill, Daniel M.
    Dahiya, Ravinder S.
    IEEE Journal on Flexible Electronics, 2024, 3 (04): : 151 - 158
  • [8] Advances in self-powered sports monitoring sensors based on triboelectric nanogenerators
    Sun, Fengxin
    Zhu, Yongsheng
    Jia, Changjun
    Zhao, Tianming
    Chu, Liang
    Mao, Yupeng
    JOURNAL OF ENERGY CHEMISTRY, 2023, 79 : 477 - 488
  • [9] Advances in self-powered sports monitoring sensors based on triboelectric nanogenerators
    Fengxin Sun
    Yongsheng Zhu
    Changjun Jia
    Tianming Zhao
    Liang Chu
    Yupeng Mao
    Journal of Energy Chemistry , 2023, (04) : 477 - 488
  • [10] Triboelectric nanogenerator for self-powered traffic monitoring
    Behera, Swayam Aryam
    Kim, Hang-Gyeom
    Jang, Il Ryu
    Hajra, Sugato
    Panda, Swati
    Vittayakorn, Naratip
    Kim, Hoe Joon
    Achary, P. Ganga Raju
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2024, 303