New Graph-Based and Transformer Deep Learning Models for River Dissolved Oxygen Forecasting

被引:2
|
作者
Rocha, Paulo Alexandre Costa [1 ,2 ]
Santos, Victor Oliveira [1 ]
The, Jesse Van Griensven [1 ,3 ]
Gharabaghi, Bahram [1 ]
机构
[1] Univ Guelph, Sch Engn, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
[2] Univ Fed Ceara, Technol Ctr, Mech Engn Dept, BR-60020181 Fortaleza, CE, Brazil
[3] Lakes Environm Res Inc, 170 Columbia St W, Waterloo, ON N2L 3L3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
pollution; dissolved oxygen; Credit River; machine learning; graph neural networks; SHAP analysis; BLACK-BOX; NEURAL-NETWORKS; WATER-QUALITY;
D O I
10.3390/environments10120217
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Dissolved oxygen (DO) is a key indicator of water quality and the health of an aquatic ecosystem. Aspiring to reach a more accurate forecasting approach for DO levels of natural streams, the present work proposes new graph-based and transformer-based deep learning models. The models were trained and validated using a network of real-time hydrometric and water quality monitoring stations for the Credit River Watershed, Ontario, Canada, and the results were compared with both benchmarking and state-of-the-art approaches. The proposed new Graph Neural Network Sample and Aggregate (GNN-SAGE) model was the best-performing approach, reaching coefficient of determination (R2) and root mean squared error (RMSE) values of 97% and 0.34 mg/L, respectively, when compared with benchmarking models. The findings from the Shapley additive explanations (SHAP) indicated that the GNN-SAGE benefited from spatiotemporal information from the surrounding stations, improving the model's results. Furthermore, temperature has been found to be a major input attribute for determining future DO levels. The results established that the proposed GNN-SAGE model outperforms the accuracy of existing models for DO forecasting, with great potential for real-time water quality management in urban watersheds.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Dissolved oxygen forecasting in the Mississippi River: advanced ensemble machine learning models
    Granata, Francesco
    Zhu, Senlin
    Di Nunno, Fabio
    ENVIRONMENTAL SCIENCE-ADVANCES, 2024, 3 (11):
  • [2] SmartFormer: Graph-based transformer model for energy load forecasting
    Saeed, Faisal
    Rehman, Abdul
    Shah, Hasnain Ali
    Diyan, Muhammad
    Chen, Jie
    Kang, Jae-Mo
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2025, 73
  • [3] Assessing Graph-based Deep Learning Models for Predicting Flash Point
    Sun, Xiaoyu
    Krakauer, Nathaniel J.
    Politowicz, Alexander
    Chen, Wei-Ting
    Li, Qiying
    Li, Zuoyi
    Shao, Xianjia
    Sunaryo, Alfred
    Shen, Mingren
    Wang, James
    Morgan, Dane
    MOLECULAR INFORMATICS, 2020, 39 (06)
  • [4] A New Graph-Based Deep Learning Model to Predict Flooding with Validation on a Case Study on the Humber River
    Santos, Victor Oliveira
    Rocha, Paulo Alexandre Costa
    Scott, John
    The, Jesse Van Griensven
    Gharabaghi, Bahram
    WATER, 2023, 15 (10)
  • [5] Graph-based deep learning for graphics classification
    Riba, Pau
    Dutta, Anjan
    Llados, Josep
    Fornes, Alicia
    2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR 2017), VOL 2, 2017, : 29 - 30
  • [6] Deep transformer-based heterogeneous spatiotemporal graph learning for geographical traffic forecasting
    Shi, Guangsi
    Luo, Linhao
    Song, Yongze
    Li, Jing
    Pan, Shirui
    ISCIENCE, 2024, 27 (07)
  • [7] Deep Learning-Based Time Series Forecasting Models Evaluation for the Forecast of Chlorophyll a and Dissolved Oxygen in the Mar Menor
    Lopez-Andreu, Francisco Javier
    Lopez-Morales, Juan Antonio
    Hernandez-Guillen, Zaida
    Carrero-Rodrigo, Juan Antonio
    Sanchez-Alcaraz, Marta
    Atenza-Juarez, Joaquin Francisco
    Erena, Manuel
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (07)
  • [8] GATFormer: A Graph-based Transformer for Long-Term Forecasting of Traffic Overcrowding
    Zhang, Ke
    Liu, Hengchang
    Clarke, Siobhan
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 1629 - 1635
  • [9] Spatial-Temporal Graph-Based Transformer Model for Traffic Flow Forecasting
    Wang, Qichao
    He, Guojun
    Lu, Peiyu
    Chen, Qiyang
    Chen, Yanrong
    Huang, Wei
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 2806 - 2811
  • [10] Transferable Graph Structure Learning for Graph-based Traffic Forecasting Across Cities
    Jin, Yilun
    Chen, Kai
    Yang, Qiang
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 1032 - 1043